Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation alone causes transmissible prion disease

28.08.2009
For the first time, Whitehead Institute researchers have shown definitively that mutations associated with prion diseases are sufficient to cause a transmissible neurodegenerative disease.

The discovery is reported in the August 27 edition of the journal Neuron.

Until now, two theories about the role mutations play in prion diseases have been at odds. According to one theory, mutations make carriers more susceptible to prions in the environment. Alternatively, mutations themselves might cause the disease and the spontaneous generation of transmissible prions.

Prions cause several diseases, including Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform encephalitis (BSE, or "mad cow disease") in cows, and scrapie in sheep. Some prion diseases, like BSE, can be transmitted from feed animals to humans. Deciphering the origins of prion diseases could help farmers and policy-makers determine how best to control a prion disease outbreak in livestock and to prevent prion transmission to humans.

Prions are misfolded versions of a protein called PrP. In its normal form, PrP is expressed in the brain and other neural tissues. But specific events, such as exposure to prions from the environment, can cause PrP to change from its normal shape to that of a prion. Once in the prion shape, the protein can convert other normal PrP proteins to the abnormal shape. As PrP proteins convert to prions, they form long chains that damage brain and nerve cells, causing the neurodegenerative and behavioral symptoms characteristic of prion diseases.

To determine if a mutation in the PrP gene can cause a transmissible prion disease, Walker Jackson, first author of the Neuron article and a postdoctoral researcher in the lab of Whitehead Member Susan Lindquist, engineered a knock-in mouse expressing a PrP gene carrying the mutation associated with the human prion disease fatal familial insomnia (FFI).

In knock-in experiments, the researcher removes a gene of interest, makes specific changes to it in a test tube, and then places it back in its original place in the genome. In this case, Jackson replaced the mouse PrP gene with an altered version carrying the FFI mutation. This version also carried a sequence from human PrP that prevented the mice from acquiring normal mouse prions that could potentially be in the environment.

"It's more difficult to create a knock-in mouse, instead of randomly integrating the mutated gene into the mouse's genome," says Jackson. "But creating a knock-in like this makes sure the gene is expressed when and where it normally would be. That's the number one reason we think this disease model worked so well, compared to others' experiments."

As adults, the mice exhibited many of the same traits as human FFI patients: reduced activity levels and sleep abnormalities. When Jackson examined the mice's brains, they resembled those of human FFI patients, with prominent damage to the thalamic region of the brain.

After establishing that the mice have the behavioral and pathological characteristics of FFI, Jackson injected diseased brain tissue from the FFI mice into healthy mice. The healthy mice also carried the same human derived barrier as the FFI mice, preventing their infection by normal mouse prions and ensuring that the only prion they could acquire was the one engineered by Jackson. After injection with the affected tissue, the healthy mice exhibited similar symptoms and neuropathology as the mice with the FFI mutation.

The mutated gene engineered by Jackson had created a transmissible prion disease that could not be attributed to any prions in the environment.

"One of the major tenets of the prion hypothesis is that a single amino acid change in PrP, associated with human disease, is sufficient to cause the spontaneous production of infectious material," says Lindquist, who is also a professor of biology at MIT and a Howard Hughes Medical Institute investigator. "Many people have tried and come close. But this is the first time it has been nailed."

This study was supported by the Department of Defense (DoD) and the National Institutes of Health (NIH).

Written by Nicole Giese

Susan Lindquist's primary affiliation is with Whitehead Institute for Biomedical Research, where her laboratory is located and all her research is conducted. She is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Spontaneous generation of prion infectivity in fatal familial insomnia knock-in mice"

Neuron, August 27, 2009

Walker S. Jackson (1), Andrew Borkowski (1,2), Henryk Faas (3), Andrew Steele (1), Oliver King (1), Nicki Watson (1), Alan Jasanoff (3,4), and Susan Lindquist (1,2).

1. Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142
2. Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
3. Frances Bitter Magnet Laboratory, Massachusetts Institute of Technology, 166 Albany St., NW14, Cambridge, MA 02139

4. Departments of Biological Engineering, Brain & Cognitive Sciences, and Nuclear Science & Engineering, Massachusetts Institute of Technology, 150 Albany St., NW14�, Cambridge, MA 02139

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>