Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation protects against obesity and diabetes

20.10.2008
A group of researchers from the German Institute of Human Nutrition (Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, DIfE) led by Hadi Al-Hasani and Hans-Georg Joost has identified a natural mutation in the Tbc1d1 gene that keeps mice lean and also protects against diabetes despite a high-fat diet.

The researchers were thus able to gain a deep insight into the function of the gene. Further clarification of its function would provide a basis for developing new approaches for prevention and treatment, as this gene could also be linked to obesity and diabetes in humans.

The researchers published their data today in the scientific journal Nature Genetics (Chadt, A. et al.; 2008).

The mutation that knocks out the Tbc1d1 gene causes increased fat uptake in skeletal muscle and, at the same time, boosts fat oxidation. On the other hand, glucose uptake of muscles is reduced. “This shows that the normal Tbc1d1 gene has a very important function in fat and glucose metabolism and therefore plays an essential role in regulation of energy metabolism“, explains Hadi Al-Hasani.

“Not only how much food we eat but also how our body uses it is decisive for development of obesity and diabetes“, says Hans-Georg Joost, Scientific Director of DIfE. When the relation between glucose and fat oxidation shifts so that the muscles use more fat and less glucose as a source of energy, this is energetically less efficient. As a result, the body stores less fat. This lowers the risk for obesity and consequently also for diabetes.

In Germany, 66 percent of the men and 50.6 percent of the women are already overweight or obese. In the USA, even three-fourths of adults “break the bathroom scales“, according to the latest reports. Overweight increases significantly the risk of heart attack, stroke, intestinal cancer, and type-2 diabetes. At present, more then seven percent of Germans are diabetic and this number will increase even more due to the growing number of overweight persons.

Studies in animals and humans have shown that there is a relation between overweight, type-2 diabetes, diet, and genes. Researchers suspect that natural variants of at least 50 genes are involved in the development of overweight. As for diabetes, probably more than 100 genes are involved. Only very few of these genes and variants are known to date. In addition, they form a functional, interacting network with environmental variables that is incompletely understood.

Since humans and mice are genetically very similar, the researchers of DIfE use the mouse model to identify genes involved in the development of overweight and diabetes. If an “overweight gene“ has been discovered which plays a role in both species, then the researchers can investigate its function and the basic molecular mechanisms in animal models under controlled conditions. Such studies often cannot be carried out in humans for ethical as well as practical reasons. The results from the animal model studies can then be used to develop new medications for treatment of obesity and diabetes.

Background information:

About the study: The researchers identified the mutation on the Tbc1d1-gene by means of back-crossing experiments. Then the genetic makeup of two very different mouse strains was compared. The New Zealand obese mouse gains weight rapidly under a high-fat diet (60 percent fat) and develops obesity, whereby the proportion of body fat can increase to over 40 percent. Despite a very high fat diet, the mice of the Swiss Jim Lambert strain did not gain weight but stayed lean, due to their genetic makeup.

Seven base pairs are missing in the mutated Tbc1d1 gene of the Swiss Jim Lambert strain. These changes lead to the synthesis of a shortened Tbc1d1 protein molecule and, most likely, loss of enzyme activity. The Tbc1d1 protein molecule is located mainly in skeletal muscle. Researchers have found smaller amounts in heart, pancreas, intestine, kidney, and hypothalamus. It is not found in fatty tissue or liver.

Gisela Olias | alfa
Further information:
http://www.dife.de

Further reports about: DIfE Diabetes GAIN Glucose HDL-cholesterol Mutation Tbc1d1 molecular mechanisms obesity skeletal muscle

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>