Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation protects against obesity and diabetes

20.10.2008
A group of researchers from the German Institute of Human Nutrition (Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, DIfE) led by Hadi Al-Hasani and Hans-Georg Joost has identified a natural mutation in the Tbc1d1 gene that keeps mice lean and also protects against diabetes despite a high-fat diet.

The researchers were thus able to gain a deep insight into the function of the gene. Further clarification of its function would provide a basis for developing new approaches for prevention and treatment, as this gene could also be linked to obesity and diabetes in humans.

The researchers published their data today in the scientific journal Nature Genetics (Chadt, A. et al.; 2008).

The mutation that knocks out the Tbc1d1 gene causes increased fat uptake in skeletal muscle and, at the same time, boosts fat oxidation. On the other hand, glucose uptake of muscles is reduced. “This shows that the normal Tbc1d1 gene has a very important function in fat and glucose metabolism and therefore plays an essential role in regulation of energy metabolism“, explains Hadi Al-Hasani.

“Not only how much food we eat but also how our body uses it is decisive for development of obesity and diabetes“, says Hans-Georg Joost, Scientific Director of DIfE. When the relation between glucose and fat oxidation shifts so that the muscles use more fat and less glucose as a source of energy, this is energetically less efficient. As a result, the body stores less fat. This lowers the risk for obesity and consequently also for diabetes.

In Germany, 66 percent of the men and 50.6 percent of the women are already overweight or obese. In the USA, even three-fourths of adults “break the bathroom scales“, according to the latest reports. Overweight increases significantly the risk of heart attack, stroke, intestinal cancer, and type-2 diabetes. At present, more then seven percent of Germans are diabetic and this number will increase even more due to the growing number of overweight persons.

Studies in animals and humans have shown that there is a relation between overweight, type-2 diabetes, diet, and genes. Researchers suspect that natural variants of at least 50 genes are involved in the development of overweight. As for diabetes, probably more than 100 genes are involved. Only very few of these genes and variants are known to date. In addition, they form a functional, interacting network with environmental variables that is incompletely understood.

Since humans and mice are genetically very similar, the researchers of DIfE use the mouse model to identify genes involved in the development of overweight and diabetes. If an “overweight gene“ has been discovered which plays a role in both species, then the researchers can investigate its function and the basic molecular mechanisms in animal models under controlled conditions. Such studies often cannot be carried out in humans for ethical as well as practical reasons. The results from the animal model studies can then be used to develop new medications for treatment of obesity and diabetes.

Background information:

About the study: The researchers identified the mutation on the Tbc1d1-gene by means of back-crossing experiments. Then the genetic makeup of two very different mouse strains was compared. The New Zealand obese mouse gains weight rapidly under a high-fat diet (60 percent fat) and develops obesity, whereby the proportion of body fat can increase to over 40 percent. Despite a very high fat diet, the mice of the Swiss Jim Lambert strain did not gain weight but stayed lean, due to their genetic makeup.

Seven base pairs are missing in the mutated Tbc1d1 gene of the Swiss Jim Lambert strain. These changes lead to the synthesis of a shortened Tbc1d1 protein molecule and, most likely, loss of enzyme activity. The Tbc1d1 protein molecule is located mainly in skeletal muscle. Researchers have found smaller amounts in heart, pancreas, intestine, kidney, and hypothalamus. It is not found in fatty tissue or liver.

Gisela Olias | alfa
Further information:
http://www.dife.de

Further reports about: DIfE Diabetes GAIN Glucose HDL-cholesterol Mutation Tbc1d1 molecular mechanisms obesity skeletal muscle

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>