Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation may lead to treatment for liver cancer

09.07.2014

Two genetic mutations in liver cells may drive tumor formation in intrahepatic cholangiocarcinoma (iCCA), the second most common form of liver cancer, according to a research published in the July issue of the journal Nature.

A team led by the Icahn School of Medicine at Mount Sinai and Harvard Medical School has discovered a link between the presence of two mutant proteins IDH1 and IDH2 and cancer. Past studies have found IDH mutations to be among the most common genetic differences seen in patients with iCCA, but how they contribute to cancer development was unknown going into the current effort.

iCCA strikes bile ducts, tube-like structures in the liver that carry bile, which is required for the digestion of food. With so much still unknown about the disease, there is no first-line, standard of care and no successful therapies.

"iCCA is resistant to standard treatments like chemotherapy and radiation," said Josep Maria Llovet, MD, Director of the Liver Cancer Program, Division of Medicine, Icahn School of Medicine at Mount Sinai, and contributing author. "Understanding the molecular mechanism of the disease is the key to finding a treatment that works."

Dr. Llovet and colleagues demonstrated that the expression of mutant IDH in the adult liver of genetically engineered mice impairs liver cell development and liver regeneration – a process in which the liver responds to injury – and increases the number of cells to form a tumor. Moreover, mutant IDH were found to work with activated KRAS, a gene essential in cancer development, causing the development of premalignant lesions and a progression to metastatic iCCA.

"Our findings provide novel insights into the development iCCA and offers a possible treatment option for patients suffering from this fatal disease," said Dr. Llovet.

By pinpointing one pathway of iCCA, this study opens up a new line of investigation to identify biomarkers of the disease. Already, Phase 1 clinical trials are being conducted with specific IDH1/2 mutations. The hope is that results of these and future studies can help doctors make life-saving decisions for their patients.

###

This study was conducted through partnerships with Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA; HCC Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Catalonia, Spain; Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, and Department of Experimental Oncology, Milan, Italy; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS; University of Rochester Medical Center, Rochester, NY; Agios Pharmaceuticals, Cambridge, MA; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain; and the University of Barcelona, Catalonia, Spain.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community-based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12-minority-owned free-standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

Lucia Lee | Eurek Alert!

Further reports about: Cancer Chemotherapy Health IDH Medical Medicine Oncology Radiation liver liver regeneration mutations

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>