Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation Is Linked to Autism-Like Symptoms in Mice

24.02.2010
When a gene implicated in human autism is disabled in mice, the rodents show learning problems and obsessive, repetitive behaviors, researchers at UT Southwestern Medical Center have found.

The researchers also report that a drug affecting a specific type of nerve function reduced the obsessive behavior in the animals, suggesting a potential way to treat repetitive behaviors in humans. The findings appear in the Feb. 24 issue of the Journal of Neuroscience.

“Clinically, this study highlights the possibility that some autism-related behaviors can be reversed through drugs targeting specific brain function abnormalities,” said Dr. Craig Powell, assistant professor of neurology and psychiatry at UT Southwestern and the study’s senior author.

“Understanding one abnormality that can lead to increased, repetitive motor behavior is not only important for autism, but also potentially for obsessive-compulsive disorder, compulsive hair-pulling and other disorders of excessive activity,” Dr. Powell said.

The study focused on a protein called neuroligin 1, or NL1, which helps physically hold nerve cells together so they can communicate better with one another. Mutations in proteins related to NL1 have been implicated in previous investigations to human autism and mental retardation.

In the latest study, the UT Southwestern researchers studied mice that had been genetically engineered to lack NL1. These mice were normal in many ways, but they groomed themselves excessively and were not as good at learning a maze as normal mice.

The altered mice showed weakened nerve signaling in a part of the brain called the hippocampus, which is involved in learning and memory, and in another brain region involved in grooming.

When treated with a drug called D-cycloserine, which activates nerves in those brain regions, the excessive grooming lessened.

“Our goal was not to make an ‘autistic mouse’ but rather to understand better how autism-related genes might alter brain function that leads to behavioral abnormalities,” Dr. Powell said. “By studying mice that lack neuroligin-1, we hope to understand better how this molecule affects communication between neurons and how that altered communication affects behavior.

“This study is important because we were able to link the altered neuronal communication to behavioral effects using a specific drug to ‘treat’ the behavioral abnormality.”

Future studies, Dr. Powell said, will focus on understanding in more detail how NL1 operates in nerve cells.

Other UT Southwestern researchers participating in the study were co-lead authors Jacqueline Blundell, former postdoctoral researcher in neurology, and Dr. Cory Blaiss, postdoctoral researcher in neurology; Felipe Espinosa, senior research scientist in neurology; and graduate student Christopher Walz.

Researchers at Stanford University also contributed to this work.

The research was supported by Autism Speaks, the Simons Foundation, the National Institute of Mental Health, BRAINS for Autism, and the Hartwell Foundation.

Visit http://www.utsouthwestern.org/pediatrics to learn more about clinical services in pediatrics, including neurology, at UT Southwestern. Visit http://www.utsouthwestern.org/mentalhealth to learn more about UT Southwestern’s clinical services in psychiatry.

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.org/pediatrics
http://www.utsouthwestern.org/mentalhealth

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>