Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation Is Linked to Autism-Like Symptoms in Mice

24.02.2010
When a gene implicated in human autism is disabled in mice, the rodents show learning problems and obsessive, repetitive behaviors, researchers at UT Southwestern Medical Center have found.

The researchers also report that a drug affecting a specific type of nerve function reduced the obsessive behavior in the animals, suggesting a potential way to treat repetitive behaviors in humans. The findings appear in the Feb. 24 issue of the Journal of Neuroscience.

“Clinically, this study highlights the possibility that some autism-related behaviors can be reversed through drugs targeting specific brain function abnormalities,” said Dr. Craig Powell, assistant professor of neurology and psychiatry at UT Southwestern and the study’s senior author.

“Understanding one abnormality that can lead to increased, repetitive motor behavior is not only important for autism, but also potentially for obsessive-compulsive disorder, compulsive hair-pulling and other disorders of excessive activity,” Dr. Powell said.

The study focused on a protein called neuroligin 1, or NL1, which helps physically hold nerve cells together so they can communicate better with one another. Mutations in proteins related to NL1 have been implicated in previous investigations to human autism and mental retardation.

In the latest study, the UT Southwestern researchers studied mice that had been genetically engineered to lack NL1. These mice were normal in many ways, but they groomed themselves excessively and were not as good at learning a maze as normal mice.

The altered mice showed weakened nerve signaling in a part of the brain called the hippocampus, which is involved in learning and memory, and in another brain region involved in grooming.

When treated with a drug called D-cycloserine, which activates nerves in those brain regions, the excessive grooming lessened.

“Our goal was not to make an ‘autistic mouse’ but rather to understand better how autism-related genes might alter brain function that leads to behavioral abnormalities,” Dr. Powell said. “By studying mice that lack neuroligin-1, we hope to understand better how this molecule affects communication between neurons and how that altered communication affects behavior.

“This study is important because we were able to link the altered neuronal communication to behavioral effects using a specific drug to ‘treat’ the behavioral abnormality.”

Future studies, Dr. Powell said, will focus on understanding in more detail how NL1 operates in nerve cells.

Other UT Southwestern researchers participating in the study were co-lead authors Jacqueline Blundell, former postdoctoral researcher in neurology, and Dr. Cory Blaiss, postdoctoral researcher in neurology; Felipe Espinosa, senior research scientist in neurology; and graduate student Christopher Walz.

Researchers at Stanford University also contributed to this work.

The research was supported by Autism Speaks, the Simons Foundation, the National Institute of Mental Health, BRAINS for Autism, and the Hartwell Foundation.

Visit http://www.utsouthwestern.org/pediatrics to learn more about clinical services in pediatrics, including neurology, at UT Southwestern. Visit http://www.utsouthwestern.org/mentalhealth to learn more about UT Southwestern’s clinical services in psychiatry.

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.org/pediatrics
http://www.utsouthwestern.org/mentalhealth

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>