Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation Is Linked to Autism-Like Symptoms in Mice

24.02.2010
When a gene implicated in human autism is disabled in mice, the rodents show learning problems and obsessive, repetitive behaviors, researchers at UT Southwestern Medical Center have found.

The researchers also report that a drug affecting a specific type of nerve function reduced the obsessive behavior in the animals, suggesting a potential way to treat repetitive behaviors in humans. The findings appear in the Feb. 24 issue of the Journal of Neuroscience.

“Clinically, this study highlights the possibility that some autism-related behaviors can be reversed through drugs targeting specific brain function abnormalities,” said Dr. Craig Powell, assistant professor of neurology and psychiatry at UT Southwestern and the study’s senior author.

“Understanding one abnormality that can lead to increased, repetitive motor behavior is not only important for autism, but also potentially for obsessive-compulsive disorder, compulsive hair-pulling and other disorders of excessive activity,” Dr. Powell said.

The study focused on a protein called neuroligin 1, or NL1, which helps physically hold nerve cells together so they can communicate better with one another. Mutations in proteins related to NL1 have been implicated in previous investigations to human autism and mental retardation.

In the latest study, the UT Southwestern researchers studied mice that had been genetically engineered to lack NL1. These mice were normal in many ways, but they groomed themselves excessively and were not as good at learning a maze as normal mice.

The altered mice showed weakened nerve signaling in a part of the brain called the hippocampus, which is involved in learning and memory, and in another brain region involved in grooming.

When treated with a drug called D-cycloserine, which activates nerves in those brain regions, the excessive grooming lessened.

“Our goal was not to make an ‘autistic mouse’ but rather to understand better how autism-related genes might alter brain function that leads to behavioral abnormalities,” Dr. Powell said. “By studying mice that lack neuroligin-1, we hope to understand better how this molecule affects communication between neurons and how that altered communication affects behavior.

“This study is important because we were able to link the altered neuronal communication to behavioral effects using a specific drug to ‘treat’ the behavioral abnormality.”

Future studies, Dr. Powell said, will focus on understanding in more detail how NL1 operates in nerve cells.

Other UT Southwestern researchers participating in the study were co-lead authors Jacqueline Blundell, former postdoctoral researcher in neurology, and Dr. Cory Blaiss, postdoctoral researcher in neurology; Felipe Espinosa, senior research scientist in neurology; and graduate student Christopher Walz.

Researchers at Stanford University also contributed to this work.

The research was supported by Autism Speaks, the Simons Foundation, the National Institute of Mental Health, BRAINS for Autism, and the Hartwell Foundation.

Visit http://www.utsouthwestern.org/pediatrics to learn more about clinical services in pediatrics, including neurology, at UT Southwestern. Visit http://www.utsouthwestern.org/mentalhealth to learn more about UT Southwestern’s clinical services in psychiatry.

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.org/pediatrics
http://www.utsouthwestern.org/mentalhealth

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>