Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene Mutation Leads to Impairment of Two Senses: Touch and Hearing

People with good hearing also have a keen sense of touch; people with impaired hearing generally have an impaired sense of touch. Data supporting this hypothesis was presented by Dr. Henning Frenzel and Prof. Gary R. Lewin (Max Delbrück Center, MDC, Berlin).
They showed that both senses have a common genetic basis. In patients with Usher syndrome, a hereditary form of deafness accompanied by impaired vision, they discovered a gene mutation that is also causative for the patients’ impaired touch sensitivity (PloS Biology doi:10.1371/journal.pbio.1001318)*. The examination was preceded by various studies, including twin studies. In total, they assessed sensory function in 518 volunteers.

People with good hearing also have a keen sense of touch; people with impaired hearing generally have an impaired sense of touch. Extensive data supporting this hypothesis was presented by Dr. Henning Frenzel and Professor Gary R. Lewin of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany. The two researchers showed that both senses – hearing and touch – have a common genetic basis. In patients with Usher syndrome, a hereditary form of deafness accompanied by impaired vision, they discovered a gene mutation that is also causative for the patients’ impaired touch sensitivity. The examination was preceded by various studies, including studies with healthy identical and non-identical human twins (PloS Biology, doi:10.1371/journal.pbio.1001318)*. In total, the researchers assessed sensory function in 518 volunteers.

In all vertebrates, and consequently also in humans, hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. When we hear, sound waves trigger vibrations that stimulate the hair-like nerve endings in the cochlea in the inner ear. These then transform the mechanical stimuli into electrical signals, which are transmitted to the brain via the auditory nerve. When we touch something a similar process takes place: The mechanical stimulus - sliding the fingers over a rough or smooth surface, the perception of vibrations - is taken up via sensors in the skin, converted into an electrical stimulus and transmitted to the brain.
Twin study with 100 pairs of twins
In recent years about 70 genes have been identified in humans, mutations in which trigger hearing loss or deafness. “Surprisingly, no genes have been found that negatively influence the sense of touch,” Professor Lewin said. To see whether the sense of touch also has a hereditary component, the researchers first studied 100 pairs of twins - 66 pairs of monozygotic twins and 34 dizygotic pairs of twins. Monozygotic twins are genetically completely identical; dizygotic twins are genetically identical to 50 percent. The tests showed that the touch sensitivity of the subjects was determined to more than 50 percent by genes. Furthermore, hearing and touch tests showed that there is a correlation between the sense of hearing and touch.

The researchers therefore suspected that genes that influence the sense of hearing may also have an influence on the sense of touch. In a next step, they recruited test subjects at a school in Berlin for students with hearing impairments. There they assessed the touch sensitivity in a cohort of 39 young people who suffered from severe congenital hearing impairment. The researchers compared these findings with the data from their twin study and discovered that not all of the young people with hearing loss had impaired tactile acuity. “Strikingly, however, many of these young people did indeed have poor tactile acuity,” Professor Lewin explained.

The researchers decided it would take too much time to analyze which of the approximately 70 genes that adversely affect the sense of hearing may also negatively affect the sense of touch. Therefore, the researchers focused specifically on patients with the Usher syndrome, a hereditary form of hearing impairment, in which the patients progressively become blind. Usher syndrome patients have varying degrees of hearing impairment, and the disease is genetically very well studied. There are nine known Usher genes carrying mutations which cause the disease.

The researchers examined one cohort of patients in a special consultation at the Charité - Universitätsmedizin Berlin for Usher patients from all over Germany. A second cohort was recruited at the university hospital La Fe in Valencia, Spain. The studies revealed that not all patients with Usher-syndrome have poor tactile acuity and touch sensitivity. The researchers showed that only patients with Usher syndrome who have a mutation in the gene USH2A have poor touch sensitivity. This mutation is also responsible for the impaired hearing of 19 patients. The 29 Usher-syndrome patients in whom the mutation could not be detected had a normal sense of touch. The researchers thus demonstrated that there is a common genetic basis for the sense of hearing and touch. They suspect that even more genes will be discovered in the future that influence both mechanosensory traits.

Women hear better than men and have a finer sense of touch
The researchers discovered another interesting detail during their five-year study. “When women complain that their men are not really listening to them, there is some truth in that,” Professor Lewin said. “The studies with a total of 518 individuals including 295 women have actually shown that women hear better and they also have a finer sense of touch than men; in short woman hear and feel more than men!”
*A genetic basis for mechanosensory traits in humans
Henning Frenzel1, Jörg Bohlender2, Katrin Pinsker2, Bärbel Wohlleben2, Jens Tank3, Stefan G. Lechner1, Daniela Schiska2, Teresa Jaijo5, Franz Rueschendorf4, Kathrin Saar4, Jens Jordan3, José M. Millán5 and Manfred Gross2, Gary R. Lewin1,6

1Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin-Buch D-13092 Germany, 2Department of Audiology and Phoniatrics, Charité, Universitätsmedizin, Berlin, Augustenburger Platz 1, Berlin D-13353 Germany. 3Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover D-30625, Germany, 4Experimental genetics of cardiovascular disease, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin-Buch D-13092 Germany, 5Genetics Unit, Hospital Universitario La Fe, Avda. de Campanar, 21, 46009 and CIBERER, Valencia, Spain
6Author for Correspondence

Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>