Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation found for aggressive form of pancreatic cancer

26.05.2014

Discovery may prove useful in future diagnoses and in developing new therapies

Researchers at the University of California, San Diego School of Medicine have identified a mutated gene common to adenosquamous carcinoma (ASC) tumors – the first known unique molecular signature for this rare, but particularly virulent, form of pancreatic cancer.

The findings are published in the May 25 advance online issue of Nature Medicine.

Pancreatic cancer is the fourth leading cause of cancer-related death in the United States, with roughly 45,220 new cases diagnosed and more than 38,400 deaths annually. Both numbers are rising. ASC cases are infrequent, but typically have a worse prognosis than more common types of pancreatic cancer.

... more about:
»ASC »Medicine »RNA »aggressive »found »mutations »pancreatic »proteins »tumors

"There has been little progress in understanding pancreatic ASC since these aggressive tumors were first described more than a century ago," said co-senior author Miles F. Wilkinson, PhD, professor in the Department of Reproductive Medicine and a member of the UC San Diego Institute for Genomic Medicine. "One problem has been identifying mutations unique to this class of tumors."

In their paper, Wilkinson, co-senior author Yanjun Lu, PhD, of Tongji University in China, and colleagues report that ASC pancreatic tumors have somatic or non-heritable mutations in the UPF1 gene, which is involved in a highly conserved RNA degradation pathway called nonsense-mediated RNA decay or NMD. It is the first known example of genetic alterations in an NMD gene in human tumors.

NMD has two major roles. First, it is a quality control mechanism used by cells to eliminate faulty messenger RNA (mRNA) – molecules that help transcribe genetic information into the construction of proteins essential to life. Second, it degrades a specific group of normal mRNAs, including those encoding proteins promoting cell growth, cell migration and cell survival. Loss of NMD in these tumors may "release the brakes on these molecules, and thereby driving tumor growth and spread," said Wilkinson.

###

Co-first author Rachid Karam, MD, PhD, a postdoctoral fellow in Wilkinson's laboratory said the findings will create new opportunities for the development of novel diagnostic approaches and therapeutic strategies for targeting pancreatic cancer. "Currently, pancreatic cancer is detected far too late in most cases for effective treatment, and therapeutic options are limited," Karam said.

Co-authors include Chen Liu, Fang Su, GuoTong Xu, LiXia Lu, ChongRen Wang, MeiYi Song, JingPing Zhu, YiRan Wang and YiFan Zhao, Tongji University School of Medicine; YingQi Zhou and Gang Li, Second Military Medical University; Yuan Ji, Fudan University; Wai Chin Foo, Mingxin Zuo and Milind Javie, University of Texas MD Anderson Cancer Center.

Funding for this research came, in part, from The National Key Basic Research Program of China, the National Natural Science Foundation of China and the National Institutes of Health.

Scott LaFee | Eurek Alert!

Further reports about: ASC Medicine RNA aggressive found mutations pancreatic proteins tumors

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>