Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mingling increases sudden death risk

14.10.2009
A multi-national research team has discovered that two genetic factors converge to increase the risk of sudden cardiac death.

The investigators – from the United States, Italy and South Africa – report in the journal Circulation that variations in the gene NOS1AP increase the risk of cardiac symptoms and sudden death in patients who have an inherited cardiac disease called congenital long-QT syndrome.

The findings will help in assessing the risk of sudden death – and assigning therapy – in patients with this syndrome, said senior author Alfred George Jr., M.D., director of the Division of Genetic Medicine at Vanderbilt University Medical Center.

Congenital long-QT syndrome affects the electrical activity of the heart ("QT" refers to a time measure on the electrocardiogram – it is longer than normal in patients with the syndrome). Long-QT syndrome makes patients susceptible to potentially fatal disorders of heart rhythm. It is a known cause of sudden death, especially in young adults and children, and has recently been estimated to affect about one in 2,200 individuals.

But not all people who have gene mutations that cause congenital long-QT syndrome have symptoms (fainting, cardiac arrest, sudden death). The big question mark, George said, is how to manage a patient who has a long-QT gene mutation, but doesn't have any symptoms.

"The concern of course is that the first symptom could be sudden death," he said. "And everything needs to be done to try to prevent that.

"But does every mutation carrier need an implantable defibrillator? Pharmacological therapies? Or should they just be watched?"

The variability in symptoms suggests that other factors play a role – either to promote or prevent symptoms.

George and Peter Schwartz, M.D., at the University of Pavia, Italy, have collaborated over the last seven years to search for "genetic modifiers" of long-QT syndrome – genes other than the disease-causing gene that play a role in the disease.

With collaborators in South Africa, they have focused on a family affected by long-QT syndrome. This extended South African family includes 500 characterized members, 205 of which carry the same long-QT-causing mutation. And as expected, not all of the mutation carriers have symptoms of the disease.

The gene NOS1AP (which codes for a "docking" protein for the enzyme nitric oxide synthase) was identified in a genome wide association study as being a determinant of the QT interval in healthy individuals. George, Schwartz and colleagues examined whether different versions (variants) of the NOS1AP gene impacted the symptoms and QT interval in the South African family.

They found that people who had the primary long-QT-causing mutation and one of two common variants of NOS1AP had a higher probability of cardiac arrest and sudden death than primary mutation carriers who didn't have those NOS1AP variants.

"In this case it appears that variants of NOS1AP somehow predispose those individuals to a worse form of the disease," George said.

The investigators also found that the family members who had the NOS1AP variants had the longest QT intervals – in a group of people who all have long QT intervals.

"We're excited that these findings begin to address how to manage patients with long-QT mutations," George said.

"What we're hoping is that NOS1AP genetic testing in mutation carriers who are asymptomatic or minimally symptomatic could tip the balance toward being more aggressive in treating them or perhaps backing off and watching them for a little longer."

George and colleagues will also continue to search for other genetic modifiers, which could add to a "risk equation" to determine the best therapy.

"Individualizing therapy in this disease is really a paradigm for personalized medicine," George said. "What do we need to know to make a treatment decision? Now we're starting to see how understanding the modifiers that hover around a primary gene mutation may influence the probability of symptoms and help guide therapy."

The National Institutes of Health and Telethon-Italy supported the research.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>