Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mingling increases sudden death risk

14.10.2009
A multi-national research team has discovered that two genetic factors converge to increase the risk of sudden cardiac death.

The investigators – from the United States, Italy and South Africa – report in the journal Circulation that variations in the gene NOS1AP increase the risk of cardiac symptoms and sudden death in patients who have an inherited cardiac disease called congenital long-QT syndrome.

The findings will help in assessing the risk of sudden death – and assigning therapy – in patients with this syndrome, said senior author Alfred George Jr., M.D., director of the Division of Genetic Medicine at Vanderbilt University Medical Center.

Congenital long-QT syndrome affects the electrical activity of the heart ("QT" refers to a time measure on the electrocardiogram – it is longer than normal in patients with the syndrome). Long-QT syndrome makes patients susceptible to potentially fatal disorders of heart rhythm. It is a known cause of sudden death, especially in young adults and children, and has recently been estimated to affect about one in 2,200 individuals.

But not all people who have gene mutations that cause congenital long-QT syndrome have symptoms (fainting, cardiac arrest, sudden death). The big question mark, George said, is how to manage a patient who has a long-QT gene mutation, but doesn't have any symptoms.

"The concern of course is that the first symptom could be sudden death," he said. "And everything needs to be done to try to prevent that.

"But does every mutation carrier need an implantable defibrillator? Pharmacological therapies? Or should they just be watched?"

The variability in symptoms suggests that other factors play a role – either to promote or prevent symptoms.

George and Peter Schwartz, M.D., at the University of Pavia, Italy, have collaborated over the last seven years to search for "genetic modifiers" of long-QT syndrome – genes other than the disease-causing gene that play a role in the disease.

With collaborators in South Africa, they have focused on a family affected by long-QT syndrome. This extended South African family includes 500 characterized members, 205 of which carry the same long-QT-causing mutation. And as expected, not all of the mutation carriers have symptoms of the disease.

The gene NOS1AP (which codes for a "docking" protein for the enzyme nitric oxide synthase) was identified in a genome wide association study as being a determinant of the QT interval in healthy individuals. George, Schwartz and colleagues examined whether different versions (variants) of the NOS1AP gene impacted the symptoms and QT interval in the South African family.

They found that people who had the primary long-QT-causing mutation and one of two common variants of NOS1AP had a higher probability of cardiac arrest and sudden death than primary mutation carriers who didn't have those NOS1AP variants.

"In this case it appears that variants of NOS1AP somehow predispose those individuals to a worse form of the disease," George said.

The investigators also found that the family members who had the NOS1AP variants had the longest QT intervals – in a group of people who all have long QT intervals.

"We're excited that these findings begin to address how to manage patients with long-QT mutations," George said.

"What we're hoping is that NOS1AP genetic testing in mutation carriers who are asymptomatic or minimally symptomatic could tip the balance toward being more aggressive in treating them or perhaps backing off and watching them for a little longer."

George and colleagues will also continue to search for other genetic modifiers, which could add to a "risk equation" to determine the best therapy.

"Individualizing therapy in this disease is really a paradigm for personalized medicine," George said. "What do we need to know to make a treatment decision? Now we're starting to see how understanding the modifiers that hover around a primary gene mutation may influence the probability of symptoms and help guide therapy."

The National Institutes of Health and Telethon-Italy supported the research.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>