Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does This Gene Make You Look Fat?

10.05.2011
Researchers develop fruit fly model to study fat production gene

University of Arkansas researchers found a way to use fat development in fruit flies to help understand fat metabolism in other animals, including humans.

They have developed a genetic model to study a protein that regulates fat production and storage in fruit flies. This protein, which has counterparts in humans, will help researchers better understand the complex regulation of fat production and metabolism at the molecular level.

Michael Lehmann, professor of biological sciences, and his students Rupali Ugrankar, Sandra Schmitt and Jill Provaznik report their findings in Molecular and Cellular Biology.

“It seems surprising that we can use a fly to study these fundamental aspects of fat metabolism and relate them to humans,” said Lehmann. “But we know from other examples, such as insulin regulation, that basic metabolic pathways share similarities in fruit flies and humans.”

The researchers focused on lipin, a protein involved in fat and energy metabolism. Three different lipins regulate metabolism in humans and mice, and the interaction of these three proteins complicates metabolic studies in mammals. However, fruit flies have only one lipin gene. This makes them an ideal model for basic studies that can be conducted in flies with less cost and more speed than in mice.

When the researchers studied fruit fly larvae that carried a mutation in the lipin gene, they found that the animals looked like liposuction had been performed on them. The larvae barely had any fat deposits and the skinny animals quickly died after entering the stage of metamorphosis.

“Fruit fly larvae store large amounts of fat that provide the energy needed for metamorphosis into the adult fly,” Lehmann said. “Without fat, the animals run out of fuel and die before they can emerge as adults.”

While humans don’t go through metamorphosis, fat still serves a purpose.

“We have fat stores to survive starvation,” Lehmann said. In modern times, however, fat storage for humans has become problematic: Estimates suggest that two-thirds of Americans are either overweight or obese, and obesity is associated with health problems ranging from diabetes to heart disease and cancer. So understanding how fat metabolism is regulated at a fundamental level may help researchers understand what happens when people pack on too much fat.

Now that researchers have developed a genetic model for lipin as an essential player in the build-up of fat stores, scientists can start introducing specific changes in the protein to see how it affects fat metabolism. The versatility of fly genetics will allow them to identify other proteins that interact with lipin to control fat metabolism.

“Now we can shed some light on some of the most basic processes that regulate energy stores by using flies as a model system,” Lehmann said.

This research was supported by grants from the National Science Foundation and the National Institutes of Health.

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Fat fat metabolism fly larvae fruit flies genetic model

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>