Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does This Gene Make You Look Fat?

10.05.2011
Researchers develop fruit fly model to study fat production gene

University of Arkansas researchers found a way to use fat development in fruit flies to help understand fat metabolism in other animals, including humans.

They have developed a genetic model to study a protein that regulates fat production and storage in fruit flies. This protein, which has counterparts in humans, will help researchers better understand the complex regulation of fat production and metabolism at the molecular level.

Michael Lehmann, professor of biological sciences, and his students Rupali Ugrankar, Sandra Schmitt and Jill Provaznik report their findings in Molecular and Cellular Biology.

“It seems surprising that we can use a fly to study these fundamental aspects of fat metabolism and relate them to humans,” said Lehmann. “But we know from other examples, such as insulin regulation, that basic metabolic pathways share similarities in fruit flies and humans.”

The researchers focused on lipin, a protein involved in fat and energy metabolism. Three different lipins regulate metabolism in humans and mice, and the interaction of these three proteins complicates metabolic studies in mammals. However, fruit flies have only one lipin gene. This makes them an ideal model for basic studies that can be conducted in flies with less cost and more speed than in mice.

When the researchers studied fruit fly larvae that carried a mutation in the lipin gene, they found that the animals looked like liposuction had been performed on them. The larvae barely had any fat deposits and the skinny animals quickly died after entering the stage of metamorphosis.

“Fruit fly larvae store large amounts of fat that provide the energy needed for metamorphosis into the adult fly,” Lehmann said. “Without fat, the animals run out of fuel and die before they can emerge as adults.”

While humans don’t go through metamorphosis, fat still serves a purpose.

“We have fat stores to survive starvation,” Lehmann said. In modern times, however, fat storage for humans has become problematic: Estimates suggest that two-thirds of Americans are either overweight or obese, and obesity is associated with health problems ranging from diabetes to heart disease and cancer. So understanding how fat metabolism is regulated at a fundamental level may help researchers understand what happens when people pack on too much fat.

Now that researchers have developed a genetic model for lipin as an essential player in the build-up of fat stores, scientists can start introducing specific changes in the protein to see how it affects fat metabolism. The versatility of fly genetics will allow them to identify other proteins that interact with lipin to control fat metabolism.

“Now we can shed some light on some of the most basic processes that regulate energy stores by using flies as a model system,” Lehmann said.

This research was supported by grants from the National Science Foundation and the National Institutes of Health.

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Fat fat metabolism fly larvae fruit flies genetic model

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>