Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene links to anorexia found by Children's Hospital of Philadelphia researchers

22.11.2010
Largest genetic study of the eating disorder detects common and rare variants

Scientists at The Children's Hospital of Philadelphia have identified both common and rare gene variants associated with the eating disorder anorexia nervosa. In the largest genetic study of this psychiatric disorder, the researchers found intriguing clues to genes they are subjecting to further investigation, including genes active in neuronal signaling and in shaping interconnections among brain cells.

Anorexia nervosa (AN) affects an estimated 9 in 1000 women in the United States. Patients have food refusal, weight loss, an irrational fear of weight gain even when emaciated, and distorted self-image of body weight and shape.

Women are affected 10 times more frequently than men, with the disorder nearly always beginning during adolescence. AN has the highest mortality rate of all psychiatric disorders, and successful treatment is challenging.

Twin studies and other family studies have suggested that AN is strongly heritable. "However, despite various genetic studies that identified a handful of candidate genes associated with AN, the genetic architecture underlying susceptibility to AN has been largely unknown," said study leader Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia. The research appeared online in Molecular Psychiatry on Nov. 16.

"This is the first genome-wide association study on a large anorexia cohort, as well as the first study of copy number variations in the disorder," said Hakonarson. Genome-wide association studies (GWAS) search for single-nucleotide polymorphisms, or SNPs—common gene variants that typically act as pointers to a gene region with a small effect on raising disease risk. The study team also performed a parallel search for copy number variations (CNVs), rarer variants that usually have a stronger impact on disease risk.

The sample size was the largest used in an AN gene study—DNA came from 1,003 AN patients, all but 24 of them female, from various sources, having an average age of 27 years. For comparison, there was a control group of 3,733 pediatric subjects (average age of 13), drawn from the Children's Hospital pediatric network.

"We confirmed results of previous studies of anorexia nervosa: SNPs in the gene OPRD1 and near the gene HTR1D confer risk for the disease," said Hakonarson. "We did not detect other obvious candidate genes, but we did generate a list of other genes that we are analyzing in follow-up studies." One SNP is between the CHD10 and CHD9 genes, a region that Hakonarson associated with autism spectrum disorders in 2009. Called cadherin genes, CHD10 and CHD9 code for neuronal cell-adhesion molecules—proteins that influence how neurons communicate with each other in the brain.

The current anorexia study also investigated CNVs—deletions or duplications of DNA sequences. Previous research by Hakonarson and others has shown that CNVs play a significant role in other neuropsychiatric disorders, such as schizophrenia, bipolar disorder and autism.

The current study suggests that CNVs may play a less important role in anorexia than they do in schizophrenia and autism. Nonetheless, the researchers identified several rare CNVs that occurred only in AN cases, including a deletion of DNA on a region of chromosome 13.

"Our study suggests that both common SNPs and rare CNVs contribute to the pathogenesis of anorexia nervosa," said Hakonarson. "The gene variants we discovered are worthy of further analysis in independent cohorts. However, the relatively modest number of anorexia cases explained by these results we found suggests that many other candidate genes remain unknown. Future studies will require much larger sample sizes to detect additional gene variants involved in this complex disorder."

Support for this research came from an Institute Development Award from The Children's Hospital of Philadelphia, as well as from the Price Foundation, the Klarman Family Foundation, and the Scripps Translational Science Institute of La Jolla, Calif. Hakonarson's co-authors were from the University of Pennsylvania, the Scripps Translational Science Institute, the Scripps Research Institute, the University of California, San Diego, and the Price Foundation Collaborative Group.

K. Wang et al, "A Genome-wide Association Study on Common SNPs and Rare CNVs in Anorexia Nervosa," Molecular Psychiatry, published online Nov. 16, 2010. doi:10.1038/mp.2010.107

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 460-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Party discipline for jumping genes

22.09.2017 | Life Sciences

The pyrenoid is a carbon-fixing liquid droplet

22.09.2017 | Life Sciences

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>