Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene linked to severity of autism's social dysfunction

07.04.2011
With the help of two sets of brothers with autism, Johns Hopkins scientists have identified a gene associated with autism that appears to be linked very specifically to the severity of social interaction deficits.

The gene, GRIP1 (glutamate receptor interacting protein 1), is a blueprint for a traffic-directing protein at synapses — those specialized contact points between brain cells across which chemical signals flow.

Identified more than a decade ago by Richard L. Huganir, Ph.D., professor and director of the Solomon H. Snyder Department of Neuroscience at the Johns Hopkins University School of Medicine, and a Howard Hughes Medical Institute investigator, GRIP1 regulates how fast receptors travel to a cell's surface, where they are activated by a brain-signaling chemical called glutamate, allowing neurons to communicate with one another.

The new study, which tracked two versions of GRIP1 in the genomes of 480 people with autism, was published March 22 in the Proceedings of the National Academy of Sciences, and lends support to a prevailing theory that autism spectrum disorders (ASD), molecularly speaking, reflect an imbalance between inhibitory and excitatory signaling at synapses.

"The GRIP1 variants we studied are not sufficient to cause autism by themselves, but appear to be contributing factors that can modify the severity of the disease," says Tao Wang, M.D., Ph.D., assistant professor, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine. "GRIP1 mutations seem to contribute to social interaction deficits in the patients we studied."

The Johns Hopkins researchers examined a part of the genomes of 480 patients with autism and compared these with 480 people of similar ethnicity without the disorder. They analyzed about 50 genes known to make proteins involved in a brain-signaling pathway, ultimately focusing their investigation on GRIP1, a protein found at both inhibitory and excitatory synapses, according to Wang.

Initially, looking under a microscope at normal mouse neurons and neurons with a mutant version of GRIP1, the investigators marked the receptor proteins with green fluorescence, added a chemical that promotes their "disappearance" deep inside a cell and timed the rates at which they disappeared — leaving a cell unable to respond to signals from other cells. They also timed the reemergence of the protein back to the cell surface. With the GRIP1 mutant neurons, the receptors recycled to the surface twice as fast as in the normal neurons.

"If the receptors are recycling faster, the number of receptors on the surface is greater, so the cells are more sensitive to glutamate," Huganir explains. "The quicker the recycling, the more receptors on the surface and the stronger the excitatory transmission."

Even if just the excitatory synapses are affected, and the inhibitory ones don't change, that alone affects the relative balance of signaling, Huganir says.

Next, using 10 mice genetically engineered to lack both normal and mutant GRIP proteins, researchers watched what happened when each animal was put into a box where it could choose between spending time with a mouse it hadn't encountered before, or an inanimate object. They compared the behaviors of these mice with 10 normal mice put into the same social situation. Mice lacking both GRIP1 and GRIP2 spent twice as much time as wild-type (normal) mice interacting with other mice as they did with inanimate objects.

"These results support a role for GRIP1 in social behavior and implicate its variants in modulating autistic behavior," Wang says.

Finally, the team looked at the behavioral analyses of individuals in two families, each with two autistic brothers, and correlated their scores on standard diagnostic tests that assessed social interaction with their genotypes for GRIP1 variants.

In one family, the brother with two copies of the GRIP1 mutant variety scored lower on social interaction tests than his brother who had only one copy of the GRIP1 variant. The boys' mother, although not diagnosed as autistic, had a history of restricted interests, poor eye contact and repetitive behavior. Tests showed she also carried one copy of the variant.

In a second family, the autistic brother with one copy of the GRIP1 variant had lower social interaction scores than his autistic sibling without a GRIP1 variant.

Because the GRIP1 gene resides in synapses where other genes also implicated in autism have been found, this location is potentially important in terms of clinical relevance, says Huganir. The team plans to sequence hundreds more synaptic proteins in autistic patients to look for mutations and then follow up with functional analyses.

This study was supported in part by research grants from Autism Speaks Foundation and the National Institute of Child Health and Human Development. Authors on the paper from Johns Hopkins, in addition to Huganir and Wang, are Rebeca Mejias, Abby Adamczyk, Victor Anggono, Tejasvi Niranjan, Gareth M. Thomas, Kamal Sharma, M. Daniele Fallin, Walter E. Kaufmann, Mikhail Pletnikov and David Valle.

Cindy Skinner, Charles E. Schwartz and Roger Stevenson, all of the Greenwood Genetic Center, are also authors on the paper.

On the Web:

Tao Wang: http://www.hopkinsmedicine.org/geneticmedicine/People/Faculty/wang.html
Richard L. Huganir: http://neuroscience.jhu.edu/RichardHuganir.php
PNAS: http://www.pnas.org/

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: GRIP1 Genetic clues brain cell diagnostic test proteins social interaction

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>