Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene linked to severity of autism's social dysfunction

07.04.2011
With the help of two sets of brothers with autism, Johns Hopkins scientists have identified a gene associated with autism that appears to be linked very specifically to the severity of social interaction deficits.

The gene, GRIP1 (glutamate receptor interacting protein 1), is a blueprint for a traffic-directing protein at synapses — those specialized contact points between brain cells across which chemical signals flow.

Identified more than a decade ago by Richard L. Huganir, Ph.D., professor and director of the Solomon H. Snyder Department of Neuroscience at the Johns Hopkins University School of Medicine, and a Howard Hughes Medical Institute investigator, GRIP1 regulates how fast receptors travel to a cell's surface, where they are activated by a brain-signaling chemical called glutamate, allowing neurons to communicate with one another.

The new study, which tracked two versions of GRIP1 in the genomes of 480 people with autism, was published March 22 in the Proceedings of the National Academy of Sciences, and lends support to a prevailing theory that autism spectrum disorders (ASD), molecularly speaking, reflect an imbalance between inhibitory and excitatory signaling at synapses.

"The GRIP1 variants we studied are not sufficient to cause autism by themselves, but appear to be contributing factors that can modify the severity of the disease," says Tao Wang, M.D., Ph.D., assistant professor, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine. "GRIP1 mutations seem to contribute to social interaction deficits in the patients we studied."

The Johns Hopkins researchers examined a part of the genomes of 480 patients with autism and compared these with 480 people of similar ethnicity without the disorder. They analyzed about 50 genes known to make proteins involved in a brain-signaling pathway, ultimately focusing their investigation on GRIP1, a protein found at both inhibitory and excitatory synapses, according to Wang.

Initially, looking under a microscope at normal mouse neurons and neurons with a mutant version of GRIP1, the investigators marked the receptor proteins with green fluorescence, added a chemical that promotes their "disappearance" deep inside a cell and timed the rates at which they disappeared — leaving a cell unable to respond to signals from other cells. They also timed the reemergence of the protein back to the cell surface. With the GRIP1 mutant neurons, the receptors recycled to the surface twice as fast as in the normal neurons.

"If the receptors are recycling faster, the number of receptors on the surface is greater, so the cells are more sensitive to glutamate," Huganir explains. "The quicker the recycling, the more receptors on the surface and the stronger the excitatory transmission."

Even if just the excitatory synapses are affected, and the inhibitory ones don't change, that alone affects the relative balance of signaling, Huganir says.

Next, using 10 mice genetically engineered to lack both normal and mutant GRIP proteins, researchers watched what happened when each animal was put into a box where it could choose between spending time with a mouse it hadn't encountered before, or an inanimate object. They compared the behaviors of these mice with 10 normal mice put into the same social situation. Mice lacking both GRIP1 and GRIP2 spent twice as much time as wild-type (normal) mice interacting with other mice as they did with inanimate objects.

"These results support a role for GRIP1 in social behavior and implicate its variants in modulating autistic behavior," Wang says.

Finally, the team looked at the behavioral analyses of individuals in two families, each with two autistic brothers, and correlated their scores on standard diagnostic tests that assessed social interaction with their genotypes for GRIP1 variants.

In one family, the brother with two copies of the GRIP1 mutant variety scored lower on social interaction tests than his brother who had only one copy of the GRIP1 variant. The boys' mother, although not diagnosed as autistic, had a history of restricted interests, poor eye contact and repetitive behavior. Tests showed she also carried one copy of the variant.

In a second family, the autistic brother with one copy of the GRIP1 variant had lower social interaction scores than his autistic sibling without a GRIP1 variant.

Because the GRIP1 gene resides in synapses where other genes also implicated in autism have been found, this location is potentially important in terms of clinical relevance, says Huganir. The team plans to sequence hundreds more synaptic proteins in autistic patients to look for mutations and then follow up with functional analyses.

This study was supported in part by research grants from Autism Speaks Foundation and the National Institute of Child Health and Human Development. Authors on the paper from Johns Hopkins, in addition to Huganir and Wang, are Rebeca Mejias, Abby Adamczyk, Victor Anggono, Tejasvi Niranjan, Gareth M. Thomas, Kamal Sharma, M. Daniele Fallin, Walter E. Kaufmann, Mikhail Pletnikov and David Valle.

Cindy Skinner, Charles E. Schwartz and Roger Stevenson, all of the Greenwood Genetic Center, are also authors on the paper.

On the Web:

Tao Wang: http://www.hopkinsmedicine.org/geneticmedicine/People/Faculty/wang.html
Richard L. Huganir: http://neuroscience.jhu.edu/RichardHuganir.php
PNAS: http://www.pnas.org/

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: GRIP1 Genetic clues brain cell diagnostic test proteins social interaction

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>