Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene limits learning and memory in mice

20.09.2010
Deleting a certain gene in mice can make them smarter by unlocking a mysterious region of the brain considered to be relatively inflexible, scientists at Emory University School of Medicine have found.

Mice with a disabled RGS14 gene are able to remember objects they'd explored and learn to navigate mazes better than regular mice, suggesting that RGS14's presence limits some forms of learning and memory.

The results were published online this week in the Early Edition of the Proceedings of the National Academy of Sciences.

Since RGS14 appears to hold mice back mentally, John Hepler, PhD, professor of pharmacology at Emory University School of Medicine, says he and his colleagues have been jokingly calling it the "Homer Simpson gene."

RGS14 is primarily turned on in one particular part -- called CA2 -- of the hippocampus, a region of the brain known for decades to be involved in consolidating new learning and forming new memories. However, the CA2 region lies off the beaten path scientifically and it's not clear what its functions are, Hepler says.

RGS14, which is also found in humans, was identified more than a decade ago. Hepler and his colleagues have previously shown that the RGS14 protein can regulate several molecules involved in processing different types of signals in the brain that are known to be important for learning and memory. They believe RGS14 is a key control protein for these signals.

To probe RGS14's functions, Sarah Emerson Lee, a graduate student working with Hepler, characterized mice whose RGS14 genes were disabled using gene-targeting technology. In collaboration with Serena Dudek, PhD, at the National Institute of Environmental Health Sciences, they examined how the CA2 region responded to electrical stimulation in the gene-altered mice.

Many researchers have examined how other parts of the hippocampus are involved in long-term potentiation, a strengthening of connections between neurons that can be seen after new memory formation or artificial stimulation in a culture dish. The CA2 region is distinct from other regions for being resistant to long-term potentiation, and neurons within CA2 are able to survive injury by seizures or stroke more than neurons in other parts of the hippocampus.

The researchers were surprised to find that, in mice with a disabled RGS14 gene, the CA2 region was now capable of "robust" long-term potentiation, meaning that in response to electrical stimulation, neurons there had stronger connections. On top of that, the ability of the gene-altered mice to recognize objects previously placed in their cages was enhanced, compared to normal mice. They also learned more quickly to navigate through a water maze to a hidden escape platform by remembering visual cues.

"A big question this research raises is why would we, or mice, have a gene that makes us less smart – a Homer Simpson gene?" Hepler says. "I believe that we are not really seeing the full picture. RGS14 may be a key control gene in a part of the brain that, when missing or disabled, knocks brain signals important for learning and memory out of balance."

The lack of RGS14 doesn't seem to hurt the altered mice, but it is still possible that they have their brain functions changed in a way that researchers have not yet been able to spot. Besides being resistant to injury by seizure, certain types of CA2 neurons are lost in schizophrenia, and loss of another gene turned on primarily in the CA2 region leads to altered social behaviors, Hepler notes.

"This suggests that these mice may not forget things as easily as other mice, or perhaps they have altered social behavior or sensitivity to seizures," he says. "But not necessarily."

Lee is investigating some of these possibilities now.

"The pipe dream is that maybe you could find a compound that inhibits RGS14 or shuts it down," he adds. "Then, perhaps, you could enhance cognition."

At Emory, collaborators included Kerry Ressler, MD, PhD, associate professor of psychiatry and behavioral sciences, Yoland Smith, PhD, research professor of neurology (both at Yerkes National Primate Research Center), David Weinshenker, PhD, associate professor of human genetics and Yue Feng, PhD, associate professor of pharmacology, with additional contributions from J. David Sweatt, PhD, chair of neurobiology at University of Alabama, Birmingham.

The research was supported by the National Institutes of Health.

Reference:

S.E. Lee et al. RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. PNAS Early Edition (2010). http://www.pnas.org/content/early/2010/09/03/1005362107.abstract

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has a $2.5 billion budget, 17,600 employees, 2,500 full-time and 1,500 affiliated faculty, 4,700 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>