Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New gene could lead to better bug-resistant plants

The discovery of a new gene could lead to better bug-resistant plants.
Research led by Michigan State University and appearing on the cover of this week’s Proceedings of the National Academy of Sciences, demonstrates that domestic tomatoes could re-learn a thing or two from their wild cousins.

Long-term cultivation has led to tomato crops losing beneficial traits common to wild tomatoes. Anthony Schilmiller, MSU research assistant professor of biochemistry and molecular biology, was able to identify a gene that is involved in one of these beneficial traits.

Many tomato secrets are found in its hair. Trichomes, or hair-like protrusions, produce a mixture of specialized chemicals that shape the interactions between the plant and its environment. The location of the chemicals allows some of them to act as the first line of defense against pests.

One class of compounds, acyl sugars, is a frontline defender. Trichomes secrete acyl sugars to fend off pests. Schilmiller teamed with Robert Last, MSU professor of biochemistry and molecular biology, and Amanda Charbonneau, MSU doctoral researcher, to try to understand how these chemicals are made. Little was known about how acyl sugars were produced until now, and this research identifies and describes the first gene that participates in the production of the protective sugars in cultivated tomatoes, Schilmiller said.

“Acyl sugars play a critical role in allowing wild tomatoes to fend off bugs,” he said. “Because cultivated tomatoes were not bred for their acyl sugar amounts and quality, they have reduced levels compared to wild ones we do not eat. Understanding how they are made is the first step toward breeding cultivated tomatoes, and other plants in this family, to make them more resistant to herbivores.”

Other Solanaceous crops that could benefit from this research include potatoes, peppers, eggplants and petunias.

In addition, this work shows that the newly discovered gene is active only in one specific cell of one trichome type.

“Not only will we be able to potentially engineer heartier tomatoes, but understanding how to specifically target trichome gene expression without affecting the fruit, we’ll also be able to add other important chemicals for insect resistance and possibly other beneficial traits to the surface of the plants,” Schilmiller said.

The research was funded by the National Science Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:

Further reports about: Acyl sugars Biochemistry MSU Molecular Biology domestic tomatoes trichomes

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>