Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that improves quality of reprogrammed stem cells identified by Singapore scientists

08.02.2010
Provides 'a better inkling of what we might aim for before differentiating iPS cells to clinically useful cell types'

In the 7 Feb. 2010 issue of the journal Nature, scientists at the Genome Institute of Singapore (GIS), report that a genetic molecule, called Tbx3, which is crucial for many aspects of early developmental processes in mammals, significantly improves the quality of stem cells that have been reprogrammed from differentiated cells.

Stem cells reprogrammed from differentiated cells are known as induced pluripotent stem cells or iPS cells.

By adding Tbx3 to the existing reprogramming cocktail, GIS scientists successfully produced iPS cells that were much more efficient in recapitulating the entire developmental process.

The capability of iPS cells for germ-line transmission represents one of the most stringent tests of their ESC-like quality. This test requires that iPS cells contribute to the formation of germ cells that are responsible for propagating the next generation of offspring.

"This represents a significant milestone in raising the current standards of iPS cell research. With this new knowledge, we are now able to generate iPS cells which are, or approach, the true equivalent of ESCs," said Lim Bing, M.D., Ph.D., lead author of the Nature paper and Senior Group Leader at GIS, one of the research institutes of Singapore's A*STAR (Agency for Science, Technology and Research).

"When applied to the area of cell therapy-based medicine, we have a better inkling of what we might aim for before differentiating iPS cells to clinically useful cell types. The finding also adds to our insight into the fascinatingly, unchartered but rapidly moving field of reprogramming," Lim added.

George Q. Daley, M.D., Ph.D., Director, Stem Cell Transplantation Program, HHMI/Children's Hospital Boston, Harvard Medical School, added, "This paper highlights the rapid progress towards optimized reprogramming strategies. The Singapore group has made an important advance in the production of high quality iPS cells. I would like to congratulate them on this important contribution."

Embryonic stem cells (ESCs) are undifferentiated master stem cells that are developmentally important because they give rise to all other differentiated cell types in the human body. It has been shown that with the introduction of a few genetic factors into differentiated cells, these master stem (undifferentiated) cells can be re-created through a process known as reprogramming into iPS cells.

Converting adult cells to embryonic cells such as iPS cells represents one of the most astounding breakthrough technologies in biological research. These cells look and behave like normal embryonic stem cells (ESCs) that can generate all other tissue types. Hence the great excitement over iPS potential impact on tissue regeneration and development of therapeutics.

Previous studies have demonstrated how scientists can make iPS cells by using different cocktails of genetic factors, as well as improve this efficiency via the addition of chemical supplements. However, not all iPS cells generated with different cocktails resemble true ESCs; that is, the quality of the iPS cells is highly varied.

"The ability to produce iPS cells has the potential to accelerate advances in human medicine. To achieve this objective, it is important to establish iPS cells that most closely resemble authentic embryo-derived pluripotent stem cells," said Azim Surani, Ph.D., Professor of Physiology and Reproduction at the Wellcome Trust /Cancer Research UK Gurdon Institute, University of Cambridge.

"The new study by Bing Lim and colleagues shows that the inclusion of Tbx3 as one of the reprogramming factors significantly improves the quality of iPS cells. These iPS cells were superior since viable adults composed entirely of these iPS cells could be generated," said Surani. "These iPS cells also showed superior ability for contribution and transmission through the germ line, which is one of the critical criteria for assessing the quality of iPS cells."

The research findings are published in the 7 Feb. 2010 advance online issue of Nature in a paper titled, "Tbx3 improves the germ-line competency of induced pluripotent stem cells".

Authors:

Jianyong Han1,2, Ping Yuan1, Henry Yang3, Jinqiu Zhang1, Junliang Tay1, Boon Seng Soh1, Pin Li1, Siew Lan Lim1, Suying Cao1, Yuriy L. Orlov4, Thomas Lufkin1, Huck-Hui Ng1,5, Wai-Leong Tam1,*,#, Bing Lim1,6,#

Stem Cell and Developmental Biology, Genome Institute of Singapore, 138672, Singapore
State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
Singapore Immunology Network, 138648, Singapore
Systems Biology, Genome Institute of Singapore, 138672, Singapore
Department of Biological Sciences, National University of Singapore, 117543, Singapore
Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA

Present address: Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA

GENOME INSTITUTE OF SINGAPORE:
www.gis.a-star.edu.sg
The Genome Institute of Singapore (GIS) is a member of the Agency for Science, Technology and Research (A*STAR). It is a national initiative with a global vision that seeks to use genomic sciences to improve public health and public prosperity. Established in 2001 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards the goal of individualized medicine. The key research areas at the GIS include Systems Biology, Stem Cell & Developmental Biology, Cancer Biology & Pharmacology, Human Genetics, Infectious Diseases, Genomic Technologies, and Computational & Mathematical Biology. The genomics infrastructure at the GIS is utilized to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact.
AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR):
www.a-star.edu.sg
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

FOR MORE INFORMATION:

Genome Institute of Singapore
Winnie Serah Lim
Office of Corporate Communications
Tel: (65) 6808 8013
(65) 9730 7884
Email: limcp2@gis.a-star.edu.sg

Winnie Serah Lim | EurekAlert!
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>