Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that improves quality of reprogrammed stem cells identified by Singapore scientists

08.02.2010
Provides 'a better inkling of what we might aim for before differentiating iPS cells to clinically useful cell types'

In the 7 Feb. 2010 issue of the journal Nature, scientists at the Genome Institute of Singapore (GIS), report that a genetic molecule, called Tbx3, which is crucial for many aspects of early developmental processes in mammals, significantly improves the quality of stem cells that have been reprogrammed from differentiated cells.

Stem cells reprogrammed from differentiated cells are known as induced pluripotent stem cells or iPS cells.

By adding Tbx3 to the existing reprogramming cocktail, GIS scientists successfully produced iPS cells that were much more efficient in recapitulating the entire developmental process.

The capability of iPS cells for germ-line transmission represents one of the most stringent tests of their ESC-like quality. This test requires that iPS cells contribute to the formation of germ cells that are responsible for propagating the next generation of offspring.

"This represents a significant milestone in raising the current standards of iPS cell research. With this new knowledge, we are now able to generate iPS cells which are, or approach, the true equivalent of ESCs," said Lim Bing, M.D., Ph.D., lead author of the Nature paper and Senior Group Leader at GIS, one of the research institutes of Singapore's A*STAR (Agency for Science, Technology and Research).

"When applied to the area of cell therapy-based medicine, we have a better inkling of what we might aim for before differentiating iPS cells to clinically useful cell types. The finding also adds to our insight into the fascinatingly, unchartered but rapidly moving field of reprogramming," Lim added.

George Q. Daley, M.D., Ph.D., Director, Stem Cell Transplantation Program, HHMI/Children's Hospital Boston, Harvard Medical School, added, "This paper highlights the rapid progress towards optimized reprogramming strategies. The Singapore group has made an important advance in the production of high quality iPS cells. I would like to congratulate them on this important contribution."

Embryonic stem cells (ESCs) are undifferentiated master stem cells that are developmentally important because they give rise to all other differentiated cell types in the human body. It has been shown that with the introduction of a few genetic factors into differentiated cells, these master stem (undifferentiated) cells can be re-created through a process known as reprogramming into iPS cells.

Converting adult cells to embryonic cells such as iPS cells represents one of the most astounding breakthrough technologies in biological research. These cells look and behave like normal embryonic stem cells (ESCs) that can generate all other tissue types. Hence the great excitement over iPS potential impact on tissue regeneration and development of therapeutics.

Previous studies have demonstrated how scientists can make iPS cells by using different cocktails of genetic factors, as well as improve this efficiency via the addition of chemical supplements. However, not all iPS cells generated with different cocktails resemble true ESCs; that is, the quality of the iPS cells is highly varied.

"The ability to produce iPS cells has the potential to accelerate advances in human medicine. To achieve this objective, it is important to establish iPS cells that most closely resemble authentic embryo-derived pluripotent stem cells," said Azim Surani, Ph.D., Professor of Physiology and Reproduction at the Wellcome Trust /Cancer Research UK Gurdon Institute, University of Cambridge.

"The new study by Bing Lim and colleagues shows that the inclusion of Tbx3 as one of the reprogramming factors significantly improves the quality of iPS cells. These iPS cells were superior since viable adults composed entirely of these iPS cells could be generated," said Surani. "These iPS cells also showed superior ability for contribution and transmission through the germ line, which is one of the critical criteria for assessing the quality of iPS cells."

The research findings are published in the 7 Feb. 2010 advance online issue of Nature in a paper titled, "Tbx3 improves the germ-line competency of induced pluripotent stem cells".

Authors:

Jianyong Han1,2, Ping Yuan1, Henry Yang3, Jinqiu Zhang1, Junliang Tay1, Boon Seng Soh1, Pin Li1, Siew Lan Lim1, Suying Cao1, Yuriy L. Orlov4, Thomas Lufkin1, Huck-Hui Ng1,5, Wai-Leong Tam1,*,#, Bing Lim1,6,#

Stem Cell and Developmental Biology, Genome Institute of Singapore, 138672, Singapore
State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
Singapore Immunology Network, 138648, Singapore
Systems Biology, Genome Institute of Singapore, 138672, Singapore
Department of Biological Sciences, National University of Singapore, 117543, Singapore
Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA

Present address: Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA

GENOME INSTITUTE OF SINGAPORE:
www.gis.a-star.edu.sg
The Genome Institute of Singapore (GIS) is a member of the Agency for Science, Technology and Research (A*STAR). It is a national initiative with a global vision that seeks to use genomic sciences to improve public health and public prosperity. Established in 2001 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards the goal of individualized medicine. The key research areas at the GIS include Systems Biology, Stem Cell & Developmental Biology, Cancer Biology & Pharmacology, Human Genetics, Infectious Diseases, Genomic Technologies, and Computational & Mathematical Biology. The genomics infrastructure at the GIS is utilized to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact.
AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR):
www.a-star.edu.sg
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

FOR MORE INFORMATION:

Genome Institute of Singapore
Winnie Serah Lim
Office of Corporate Communications
Tel: (65) 6808 8013
(65) 9730 7884
Email: limcp2@gis.a-star.edu.sg

Winnie Serah Lim | EurekAlert!
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>