Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene helps protect tumor suppressor in breast cancer

08.04.2009
Researchers find Rak regulates PTEN, may work independently as well

Scientists at The University of Texas M. D. Anderson Cancer Center have discovered a gene that protects PTEN, a major tumor-suppressor that is reduced but rarely mutated in about half of all breast cancers.

The gene Rak helps protect and regulate PTEN, which also is important in several other types of cancer, the team reports in the April edition of Cancer Cell. Causes for diminished PTEN protein levels in breast cancer absent a mutation of the PTEN gene have eluded researchers, who knew for several years that a piece of the puzzle was missing.

"We've clearly discovered the missing link that explains how Rak can stabilize PTEN protein to prevent breast cancer development," said lead author Shiaw-Yih Lin, Ph.D., an assistant professor in the Department of Systems Biology at M. D. Anderson. "Our research explains why PTEN is defective in breast cancer and provides important clues for the development of effective therapy in Rak- or PTEN-defective breast cancers."

In addition to breast cancer, PTEN frequently is mutated or inactivated in glioblastoma, melanoma, and cancers of the prostate and endometrium. The severity of PTEN irregularities strongly correlates with the tumor stage and grade. For example, complete loss of PTEN expression is found more frequently in metastatic cancer than in primary tumors.

In the laboratory, researchers found Rak can stabilize PTEN protein and function as a tumor suppressor gene to prevent breast cancer development.

To examine the correlation between Rak and PTEN protein expression, researchers analyzed cells from 42 breast cancers. Rak expression showed a strong positive correlation with PTEN.

They also investigated the effect of Rak expression by injecting mice with cells that over-expressed Rak. All the mice injected with Rak-overexpressing cells remained tumor free, whereas all the control mice developed tumors.

"To further assess whether Rak is a bona fide breast tumor suppressor gene, we sought to determine if loss of Rak expression would transform normal mammary epithelial cells," Lin said. "We injected control cells or cells in which Rak was compromised into the mammary glands of healthy mice and monitored tumor growth. Notably, all the mice injected with Rak-knockdown cells, but none of the mice injected with control cells, developed tumors."

Recent studies have shown that the PTEN protein is destroyed when it is bound by the enzyme NEDD4-1, which attaches targeting molecules called ubiquitins that mark PTEN for destruction by the ubiquitin proteasome complex.

Lin and colleagues showed that Rak saves PTEN from degradation by attaching a phosphate group to the protein, blocking NEDD4-1 from binding to PTEN.

Although this study demonstrates a PTEN-dependent function of Rak, Lin says much research remains ahead on yet-unidentified PTEN-independent functions of Rak in tumor suppression.

"Recently, we found that Rak can prevent spontaneous DNA damage and has a critical role in suppressing cancer stem cells," he said. "So, we will expand our research efforts toward determining how Rak helps to maintain genomic integrity."

PTEN

This work was supported in part by a grant from the National Cancer Institute.

In addition to Lin, other authors on the study included Eun-Kyoung Yim, Ph.D., Guang Peng, M.D., Ph.D., Hui Dai, M.D., Ruozhen Hu, M.S., Yiling Lu, M.D., and Gordon Mills, M.D., Ph.D. of the Department of Systems Biology at M. D. Anderson; Kaiyi Li, Ph.D. of the Department of Surgery at Baylor College of Medicine, Funda Meric-Bernstam, M.D. of the Department of Surgical Oncology at M. D. Anderson; Bryan Hennessy, M.D. of the Department of Gynecologic Medical Oncology at M. D. Anderson; and Rolf Craven, Ph.D. of the Department of Molecular and Biomedical Pharmacology at the University of Kentucky, Lexington.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>