Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene helps plants use less water without biomass loss

Purdue University researchers have found a genetic mutation that allows a plant to better endure drought without losing biomass, a discovery that could reduce the amount of water required for growing plants and help plants survive and thrive in adverse conditions.

Plants can naturally control the opening and closing of stomata, pores that take in carbon dioxide and release water. During drought conditions, a plant might close its stomata to conserve water. By doing so, however, the plant also reduces the amount of carbon dioxide it can take in, which limits photosynthesis and growth.

Mike Mickelbart, an assistant professor of horticulture; Mike Hasegawa, a professor of horticulture; and Chal Yul Yoo, a horticulture graduate student, found that a genetic mutation in the research plant Arabidopsis thaliana reduces the number of stomata. But instead of limiting carbon dioxide intake, the gene creates a beneficial equilibrium.

"The plant can only fix so much carbon dioxide. The fewer stomata still allow for the same amount of carbon dioxide intake as a wild type while conserving water," said Mickelbart, whose results were published in the early online version of the journal The Plant Cell. "This shows there is potential to reduce transpiration without a yield penalty."

Mickelbart and Yoo used an infrared gas analyzer to determine the amount of carbon dioxide taken in and water lost in the Arabidopsis mutant. Carbon dioxide is pumped into a chamber with the plant and the analyzer measures the amount left after a plant has started to take up the gas. A similar process measures water lost through transpiration, in which water is released from a plant's leaves.

Analysis showed that the plant, which has a mutant form of the gene GTL1, did not reduce carbon dioxide intake but did have a 20 percent reduction in transpiration. The plant had the same biomass as a wild type of Arabidopsis when its shoot dry weight was measured.

"The decrease in transpiration leads to increased drought tolerance in the mutant plants," Yoo said. "They will hold more water in their leaves during drought stress."

Of the 20 genes known to control stomata, SDD1 was highly expressed in the mutant. SDD1 is a gene that is responsible for regulating the number of stomata on leaves. In the mutant, with GTL1 not functioning, SDD1 is highly expressed, which results in the development of fewer stomata.

Mickelbart said the finding is important because it opens the possibility that there is a natural way to improve crop drought tolerance without decreasing biomass or yield. He said the next step in the research is to determine the role of GTL1 in a crop plant.

The National Science Foundation and a Binational Agricultural Research and Development Award funded the research.

Writer: Brian Wallheimer, 765-496-2050,

Sources: Michael Mickelbart, 765-494-7902,
Chan Yul Yoo, 765-494-1316,
Ag Communications: (765) 494-2722;
Keith Robinson,
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>