Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene function discovery: Guilt by association

01.02.2010
Scientists have created a new computational model that can be used to predict gene function of uncharacterized plant genes with unprecedented speed and accuracy. The network, dubbed AraNet, has over 19,600 genes associated to each other by over 1 million links and can increase the discovery rate of new genes affiliated with a given trait tenfold. It is a huge boost to fundamental plant biology and agricultural research.

Despite immense progress in functional characterization of plant genomes, over 30% of the 30,000 Arabidopsis genes have not been functionally characterized yet. Another third has little evidence regarding their role in the plant.


Each line of this AraNet network represents a functional link between two genes. The colors indicate the strength of the link using a red-blue heat map scheme.The image includes about 100,000 functional links made among about 10,000 Arabidopsis genes. Credit: Image courtesy Sue Rhee

"In essence, AraNet is based on the simple idea that genes that physically reside in the same neighborhood, or turn on in concert with one another are probably associated with similar traits," explained corresponding author Sue Rhee at the Carnegie Institution's Department of Plant Biology. "We call it guilt by association. Based on over 50 million scientific observations, AraNet contains over 1 million linkages of the 19,600 genes in the tiny, experimental mustard plant Arabidopsis thaliana. We made a map of the associations and demonstrated that we can use the network to propose that uncharacterized genes are linked to specific traits based on the strength of their associations with genes already known to be linked to those characteristics."

The network allows for two main types of testable hypotheses. The first uses a set of genes known to be involved in a biological process such as stress responses, as a "bait" to find new genes ("prey") involved in stress responses. The bait genes are linked to each other based on over 24 different types of experiments or computations. If they are linked to each other much more frequently or strongly than by chance, one can hypothesize that other genes that are as well linked to the bait genes have a high probability of being involved in the same process. The second testable hypothesis is to predict functions for uncharacterized genes. There are 4,479 uncharacterized genes in AraNet that have links to ones that have been characterized, so a significant portion of all the unknowns now get a new hint as to their function.

The scientists tested the accuracy of AraNet with computational validation tests and laboratory experiments on genes that the network predicted as related. The researchers selected three uncharacterized genes. Two of them exhibited phenotypes that AraNet predicted. One is a gene that regulates drought sensitivity, now named Drought sensitive 1 (Drs1). The other regulates lateral root development, called Lateral root stimulator 1 (Lrs1). The researchers found that the network is much stronger forecasting correct associations than previous small-scale networks of Arabidopsis genes.

"Plants, animals and other organisms share a surprising number of the same or similar genes—particularly those that arose early in evolution and were retained as organisms differentiated over time," commented a lead and corresponding author Insuk Lee at Yonsei University of South Korea. "AraNet not only contains information from plant genes, it also incorporates data from other organisms. We wanted to know how much of the system's accuracy was a result of plant data versus non-plant derived data. We found that although the plant linkages provided most of the predictive power, the non-plant linkages were a significant contributor."

"AraNet has the potential to help realize the promise of genomics in plant engineering and personalized medicine," remarked Rhee. "A main bottleneck has been the huge portion of genes with unknown function, even in model organisms that have been studied intensively. We need innovative ways of discovering gene function and AraNet is a perfect example of such innovation.

"Food security is no longer taken for granted in the fast-paced milieu of the changing climate and globalized economy of the 21st century. Innovations in the basic understanding of plants and effective application of that knowledge in the field are essential to meet this challenge. Numerous genome-scale projects are underway for several plant species. However, new strategies to identify candidate genes for specific plant traits systematically by leveraging these high-throughput, genome-scale experimental data are lagging. AraNet integrates all such data and provides a rational, statistical assessment of the likelihood of genes functioning in particular traits, thereby assisting scientists to design experiments to discover gene function. AraNet will become an essential component of the next-generation plant research."

The research is published in the January 31st, advanced on-line Nature Biotechnology and was supported by the Carnegie Institution for Science, the National Research Foundation of Korea, Yonsei University, The National Science Foundation, the National Institutes of Health, and the Packard Foundation.

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Sue Rhee | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>