Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene function discovery: Guilt by association

01.02.2010
Scientists have created a new computational model that can be used to predict gene function of uncharacterized plant genes with unprecedented speed and accuracy. The network, dubbed AraNet, has over 19,600 genes associated to each other by over 1 million links and can increase the discovery rate of new genes affiliated with a given trait tenfold. It is a huge boost to fundamental plant biology and agricultural research.

Despite immense progress in functional characterization of plant genomes, over 30% of the 30,000 Arabidopsis genes have not been functionally characterized yet. Another third has little evidence regarding their role in the plant.


Each line of this AraNet network represents a functional link between two genes. The colors indicate the strength of the link using a red-blue heat map scheme.The image includes about 100,000 functional links made among about 10,000 Arabidopsis genes. Credit: Image courtesy Sue Rhee

"In essence, AraNet is based on the simple idea that genes that physically reside in the same neighborhood, or turn on in concert with one another are probably associated with similar traits," explained corresponding author Sue Rhee at the Carnegie Institution's Department of Plant Biology. "We call it guilt by association. Based on over 50 million scientific observations, AraNet contains over 1 million linkages of the 19,600 genes in the tiny, experimental mustard plant Arabidopsis thaliana. We made a map of the associations and demonstrated that we can use the network to propose that uncharacterized genes are linked to specific traits based on the strength of their associations with genes already known to be linked to those characteristics."

The network allows for two main types of testable hypotheses. The first uses a set of genes known to be involved in a biological process such as stress responses, as a "bait" to find new genes ("prey") involved in stress responses. The bait genes are linked to each other based on over 24 different types of experiments or computations. If they are linked to each other much more frequently or strongly than by chance, one can hypothesize that other genes that are as well linked to the bait genes have a high probability of being involved in the same process. The second testable hypothesis is to predict functions for uncharacterized genes. There are 4,479 uncharacterized genes in AraNet that have links to ones that have been characterized, so a significant portion of all the unknowns now get a new hint as to their function.

The scientists tested the accuracy of AraNet with computational validation tests and laboratory experiments on genes that the network predicted as related. The researchers selected three uncharacterized genes. Two of them exhibited phenotypes that AraNet predicted. One is a gene that regulates drought sensitivity, now named Drought sensitive 1 (Drs1). The other regulates lateral root development, called Lateral root stimulator 1 (Lrs1). The researchers found that the network is much stronger forecasting correct associations than previous small-scale networks of Arabidopsis genes.

"Plants, animals and other organisms share a surprising number of the same or similar genes—particularly those that arose early in evolution and were retained as organisms differentiated over time," commented a lead and corresponding author Insuk Lee at Yonsei University of South Korea. "AraNet not only contains information from plant genes, it also incorporates data from other organisms. We wanted to know how much of the system's accuracy was a result of plant data versus non-plant derived data. We found that although the plant linkages provided most of the predictive power, the non-plant linkages were a significant contributor."

"AraNet has the potential to help realize the promise of genomics in plant engineering and personalized medicine," remarked Rhee. "A main bottleneck has been the huge portion of genes with unknown function, even in model organisms that have been studied intensively. We need innovative ways of discovering gene function and AraNet is a perfect example of such innovation.

"Food security is no longer taken for granted in the fast-paced milieu of the changing climate and globalized economy of the 21st century. Innovations in the basic understanding of plants and effective application of that knowledge in the field are essential to meet this challenge. Numerous genome-scale projects are underway for several plant species. However, new strategies to identify candidate genes for specific plant traits systematically by leveraging these high-throughput, genome-scale experimental data are lagging. AraNet integrates all such data and provides a rational, statistical assessment of the likelihood of genes functioning in particular traits, thereby assisting scientists to design experiments to discover gene function. AraNet will become an essential component of the next-generation plant research."

The research is published in the January 31st, advanced on-line Nature Biotechnology and was supported by the Carnegie Institution for Science, the National Research Foundation of Korea, Yonsei University, The National Science Foundation, the National Institutes of Health, and the Packard Foundation.

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Sue Rhee | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>