Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene fuelled transporter causes breast cancer cells to self-destruct

28.02.2011
Scientists at Queen’s have shown that they can deliver a gene directly into breast cancer cells causing them to self-destruct, using an innovative, miniscule gene transport system, according to research published today (28 February) in the International Journal of Pharmaceutics.
Using a transport system called a Designer Biomimetic Vector (DBV), Dr Helen McCarthy, from Queen’s School of Pharmacy, funded by Breast Cancer Campaign, packaged a gene into a nanoparticle 400 times smaller than the width of a human hair, allowing it to be delivered straight into breast cancer cells in the laboratory.

The gene called iNOS, is targeted specifically to breast cancer cells using the DBV where it forces the cells to produce poisonous nitric oxide; either killing the cells outright or making them more vulnerable to being destroyed by chemotherapy and radiotherapy. As this approach leaves normal healthy breast cells unaffected, this would overcome many of the toxic side effects of current treatments.

Further investigation is needed but it could be trialled in patients in as little as five years. Dr McCarthy’s next step is to turn the nanoparticles into a dried powder that could be easily transported and reconstituted before being given to patients.

Dr McCarthy said: “A major stumbling block to using gene therapy in the past has been the lack of an effective delivery system. Combining the Designer Biomimetic Vector with the iNOS gene has proved successful in killing breast cancer cells in the laboratory. In the long term, I see this being used to treat people with metastatic breast cancer that has spread to the bones, ideally administered before radiotherapy and chemotherapy.

Dr Lisa Wilde, Research Information Senior Manager, Breast Cancer Campaign said: “Gene therapy could potentially be an exciting avenue for treating breast cancer. Although at an early stage, Dr McCarthy’s laboratory research shows that this system for delivering toxic genes to tumour cells holds great promise and we look forward to seeing how it is translated into patients.”
Media enquiries to Claire Learner, Media Relations Officer,
Breast Cancer Campaign, 00 44 (0)20 7749 3705, clearner@breastcancercampaign.org M: 07736 313698
or Queen’s University Communications Office, 00 44 (0)28 9097 3087/3091,
email comms.office@qub.ac.uk

Anne-Marie Clarke | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>