Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene flow may help plants adapt to climate change

29.06.2011
The traffic of genes among populations may help living things better adapt to climate change, especially when genes flow among groups most affected by warming, according to a UC Davis study of the Sierra Nevada cutleaved monkeyflower. The results were published online June 27 by the journal Proceedings of the National Academy of Sciences.

The findings have implications for conservation strategies, said Sharon Strauss, professor of evolution and ecology at UC Davis and an author of the study.

“In extreme cases where we might consider augmenting genetic resources available to imperiled populations, it might be best to obtain these genes from populations inhabiting similar kinds of habitats,” Strauss said.

Graduate student Jason Sexton, with Strauss and Kevin Rice, professor of plant sciences, studied the monkeyflower (Mimulus laciniatus), an annual plant that lives in mossy areas of the Sierra at elevations of 3,200 feet to 10,000 feet.

Mountain gradients are useful for studying the effects of climate change, Strauss said, because they enable scientists to reproduce the effects of climate change without changing other factors, such as day length. The plants are already living across a range of temperatures, with those at lower elevations exposed to warmer conditions.

Sexton cross-pollinated monkeyflowers from two different locations at the warm, low-elevation edge of the plants’ range with monkeyflowers from the middle of the range. All the hybrids were then grown in the field at the low end of the range.

As the researchers observed the growing monkeyflowers, they were able to test two contrasting predictions about how gene flow should affect plants at the edge of the range. The first prediction was that any mixing of genes from a wider population would help plants adapt to warming conditions. The second was that genes from the center of the range that did not help plants adapt would dilute any adaptive genes, negating their benefit.

“Gene flow” describes the movement of genetic traits within and among populations, as individual animals or plants breed.

To answer these questions, the researchers measured how the mixing of genes from different elevations affected the plants’ ability to live at the warm edge of their range, through traits such as time for seedlings to emerge, time to flowering and overall reproductive success.

The study showed that the first prediction was true – gene flow did help the plants adapt to a warmer environment.

“We generally found that there were benefits from gene flow, but gene flow from other warm-edge areas was most beneficial,” Strauss said.

Sexton noted that hybrids of monkeyflowers from two warm-edge populations did better than either of their parents, perhaps because the populations had been using different genes to adapt to warm environments.

“When added together, their performance jumped,” he said.

Often considered genetically meager, edge populations should be high-priority conservation targets since they may possess adaptations to their unique environments, Sexton said.

The work was funded by the California Native Plant Society, the U.S. Forest Service and the National Science Foundation. Sexton is now a postdoctoral fellow at the University of Melbourne, Australia.

About UC Davis
For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 32,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget that exceeds $678 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Sharon Strauss, Evolution and Ecology, (530) 752-8415, systrauss@ucdavis.edu
Kevin Rice, Plant Sciences, (530) 752-8529, kjrice@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>