Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene family found to play key role in early stages of development

26.01.2010
Scientists have identified a gene family that plays a key role in one of the earliest stages of development in which an embryo distinguishes its left side from the right and determines how organs should be positioned within the body. The finding in mice likely will lead to a better understanding of how certain birth defects occur in humans.

The study is published in the January 24, 2010, advance online issue of the journal “Nature Cell Biology.”

“Having clear knowledge of embryonic development and how certain developmental processes can go awry is imperative for understanding the causes of the various types of human birth defects, which may eventually help us devise ways to correct those defects,” said Anthony Wynshaw-Boris, MD, PhD, chief of medical genetics at UCSF Children’s Hospital and a co-senior author of the study.

In the current study, the research team built upon previous work that uncovered the mechanism within the embryo responsible for specifying its left and right sides – a process called left-right symmetry breaking. That research, conducted by geneticist Hiroshi Hamada, MD, PhD, and colleagues at Japan’s Osaka University, showed how tail-like projections known as cilia located on the surface of cells in an embryonic region called the node generate a leftward flow of fluid outside the embryo, which, in turn, lets the embryo know which side is the left.

In this earlier work, Hamada’s group discovered that the cilia are able to produce a leftward flow of fluid because they are located toward the back of the node cells and are tilted toward the embryo’s tail end. This unique placement, coupled with the cilia’s clockwise circular beating motion, results in the leftward flow and, subsequently, the embryo’s left-right symmetry breaking. According to the researchers, if this directional flow is not established, organisms can develop with their internal organs on the wrong side of the body, decreasing chances for survival.

“Knowing that the cilia’s placement on the node is intricately involved with this key stage of embryonic development, we decided to take our work a step further to see whether certain genes might determine how cilia retain this tilted position,” said Hamada, who is also a co-senior author of the current study.

Hamada and Wynshaw-Boris decided to look at whether a specific gene family, called the “Dishevelled” gene family, might be directing the cilia’s migration to the back side of the node cells. Having researched this gene family for many years, the Wynshaw-Boris lab developed mouse models with each of the three Dishevelled genes “turned off” to study their individual functions. In doing so, they found that the Dishevelled genes activate a genetic pathway, called the planar cell polarity pathway, which helps determine positional information in cells and tissues.

“We focused on the Dishevelled gene family because from our previous work, we knew that these genes were involved in the development of hair cells within the inner ear of the embryo, and that the cilia-like structures at the edge of the hair cells behave in a similar fashion as those on the node of the embryo. That similarity made us take a closer look at how this gene family was acting on correct placement of the nodal cilia at this very early stage of development,” Wynshaw-Boris explained.

Masakazu Hashimoto, a graduate student in the Hamada lab and the first author of the study, monitored the movement of cilia in live mouse embryos using a high-speed camera attached to a microscope and observed that the cilia’s position actually changed as development proceeded. In the very earliest stages – before left-right symmetry breaking occurred – cilia were located in the center of the node cells; then, as development progressed, the cilia gradually moved to the back side of the cells.

The researchers compared cilia in normal mouse embryos to those in embryos with mutated versions of all three Dishevelled genes. They found that the cilia in the mutant embryos were misplaced on the node cells and therefore unable to produce a leftward flow of fluid.

“This discovery provides exciting information about how we are built the way we are at the most basic of levels: that is, how do we differentiate our left side from our right? Ultimately this determines how the heart ends up on the left side of the body and the liver on the right side, for example,” Wynshaw-Boris added.

Additional co-authors include Kyosuke Shinohara, Shingo Ikeuchi, Satoko Yoshiba, and Chikara Meno, all of Osaka University’s Developmental Genetics Group; Jianbo Wang of the University of California, San Diego, Department of Pediatrics and Medicine; Shigenori Nonaka of Japan’s National Institute for Basic Biology; Shinji Takada of the Okazaki Institute for Integrative Biosciences; and Kohei Hatta of the University of Hyogo Graduate School of Life Science.

The research was supported by a grant from Core Research for Evolutional Science and Technology of the Japan Science and Technology Corporation and a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, as well as grants from the National Institutes of Health and March of Dimes.

UCSF Children’s Hospital creates an environment where children and their families find compassionate care at the forefront of scientific discovery, with more than 150 experts in 50 medical specialties serving patients throughout Northern California and beyond. The hospital admits about 5,000 children each year, including 2,000 babies born in the hospital. For more information, visit http:www.ucsfchildrenshospital.org.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit http//www.ucsf.edu.

Kate Vidinsky | EurekAlert!
Further information:
http://www.ucsf.edu
http://www.ucsfchildrenshospital.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>