Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene family found to play key role in early stages of development

26.01.2010
Scientists have identified a gene family that plays a key role in one of the earliest stages of development in which an embryo distinguishes its left side from the right and determines how organs should be positioned within the body. The finding in mice likely will lead to a better understanding of how certain birth defects occur in humans.

The study is published in the January 24, 2010, advance online issue of the journal “Nature Cell Biology.”

“Having clear knowledge of embryonic development and how certain developmental processes can go awry is imperative for understanding the causes of the various types of human birth defects, which may eventually help us devise ways to correct those defects,” said Anthony Wynshaw-Boris, MD, PhD, chief of medical genetics at UCSF Children’s Hospital and a co-senior author of the study.

In the current study, the research team built upon previous work that uncovered the mechanism within the embryo responsible for specifying its left and right sides – a process called left-right symmetry breaking. That research, conducted by geneticist Hiroshi Hamada, MD, PhD, and colleagues at Japan’s Osaka University, showed how tail-like projections known as cilia located on the surface of cells in an embryonic region called the node generate a leftward flow of fluid outside the embryo, which, in turn, lets the embryo know which side is the left.

In this earlier work, Hamada’s group discovered that the cilia are able to produce a leftward flow of fluid because they are located toward the back of the node cells and are tilted toward the embryo’s tail end. This unique placement, coupled with the cilia’s clockwise circular beating motion, results in the leftward flow and, subsequently, the embryo’s left-right symmetry breaking. According to the researchers, if this directional flow is not established, organisms can develop with their internal organs on the wrong side of the body, decreasing chances for survival.

“Knowing that the cilia’s placement on the node is intricately involved with this key stage of embryonic development, we decided to take our work a step further to see whether certain genes might determine how cilia retain this tilted position,” said Hamada, who is also a co-senior author of the current study.

Hamada and Wynshaw-Boris decided to look at whether a specific gene family, called the “Dishevelled” gene family, might be directing the cilia’s migration to the back side of the node cells. Having researched this gene family for many years, the Wynshaw-Boris lab developed mouse models with each of the three Dishevelled genes “turned off” to study their individual functions. In doing so, they found that the Dishevelled genes activate a genetic pathway, called the planar cell polarity pathway, which helps determine positional information in cells and tissues.

“We focused on the Dishevelled gene family because from our previous work, we knew that these genes were involved in the development of hair cells within the inner ear of the embryo, and that the cilia-like structures at the edge of the hair cells behave in a similar fashion as those on the node of the embryo. That similarity made us take a closer look at how this gene family was acting on correct placement of the nodal cilia at this very early stage of development,” Wynshaw-Boris explained.

Masakazu Hashimoto, a graduate student in the Hamada lab and the first author of the study, monitored the movement of cilia in live mouse embryos using a high-speed camera attached to a microscope and observed that the cilia’s position actually changed as development proceeded. In the very earliest stages – before left-right symmetry breaking occurred – cilia were located in the center of the node cells; then, as development progressed, the cilia gradually moved to the back side of the cells.

The researchers compared cilia in normal mouse embryos to those in embryos with mutated versions of all three Dishevelled genes. They found that the cilia in the mutant embryos were misplaced on the node cells and therefore unable to produce a leftward flow of fluid.

“This discovery provides exciting information about how we are built the way we are at the most basic of levels: that is, how do we differentiate our left side from our right? Ultimately this determines how the heart ends up on the left side of the body and the liver on the right side, for example,” Wynshaw-Boris added.

Additional co-authors include Kyosuke Shinohara, Shingo Ikeuchi, Satoko Yoshiba, and Chikara Meno, all of Osaka University’s Developmental Genetics Group; Jianbo Wang of the University of California, San Diego, Department of Pediatrics and Medicine; Shigenori Nonaka of Japan’s National Institute for Basic Biology; Shinji Takada of the Okazaki Institute for Integrative Biosciences; and Kohei Hatta of the University of Hyogo Graduate School of Life Science.

The research was supported by a grant from Core Research for Evolutional Science and Technology of the Japan Science and Technology Corporation and a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, as well as grants from the National Institutes of Health and March of Dimes.

UCSF Children’s Hospital creates an environment where children and their families find compassionate care at the forefront of scientific discovery, with more than 150 experts in 50 medical specialties serving patients throughout Northern California and beyond. The hospital admits about 5,000 children each year, including 2,000 babies born in the hospital. For more information, visit http:www.ucsfchildrenshospital.org.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit http//www.ucsf.edu.

Kate Vidinsky | EurekAlert!
Further information:
http://www.ucsf.edu
http://www.ucsfchildrenshospital.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>