Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-engineered flies are pest solution

27.01.2009
For the first time, male flies of a serious agricultural pest, the medfly, have been bred to generate offspring that die whilst they are still embryos.

Researchers writing in the open access journal BMC Biology describe the creation of the flies that, when released into a wild population, could out-compete the normal male flies and cause a generation of pests to be stillborn – protecting important crops.

Ernst A. Wimmer from the Georg-August-University in Göttingen, Germany, led an international team of researchers who developed the lethal Mediterranean fruit flies (Ceratitis capitata), also known as medfly. He said, “Here, we present the first alternative, radiation-free, reproductive sterility system for medfly based on transgenic embryonic lethality”.

The medfly is a devastating and economically important pest. The currently used method of controlling it is the sterile insect technique (SIT), whereby male flies are irradiated to induce reproductive sterility and then released into the wild, where competition with fertile males reduces the overall insect population. This radioactive version of the SIT has the drawback that the irradiated males are often less competitive than their wild brethren and so an awkward balance must be stuck between competitiveness and degree of sterility. According to Wimmer, “When transgenic males carrying our transgenic system mate with wild females, all progeny die during embryogenesis without the need for radiation. Due to the complete lethality, no fruit damage from developing larvae will occur and no transgenes can pass into the wild population. Moreover, males carrying this system are highly competitive”.

In order to suppress the lethality system during rearing of the flies, supplements are added to their food that switch off the genetic self-destruct. The authors write that, “Use of our embryonic lethality system, without the need for radiation, can increase the safety of SIT programs, since accidental releases would not lead to infestations of the environment and possible risks coming from isotopic sources can be eliminated for workers and the environment”.

Graeme Baldwin | alfa
Further information:
http://www.biomedcentral.com/bmcbiol/
http://www.biomedcentral.com/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>