Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first gene-encoded amphibian toxin isolated

19.08.2009
Appearing in the Aug. 14 issue of JBC

Researchers in China have discovered the first protein-based toxin in an amphibian –a 60 amino acid neurotoxin found in the skin of a Chinese tree frog. This finding may help shed more light into both the evolution of amphibians and the evolution of poison.

While gene-encoded protein toxins have been identified in many vertebrate animals, including fish, reptiles and mammals, none have yet been found in amphibians or birds. In the case of poisonous amphibians, like the tropical poison dart frogs, their toxins are usually small chemicals like alkaloids that are extracted from insects and secreted onto the animal's skin.

Therefore, Ren Lai and colleagues were surprised to find a protein toxin while examining the secretions of the tree frog Hyla annectans. They then purified and characterized this new toxin, which they called anntoxin.

In protein sequence and structure, anntoxin was very similar to dendrotoxins (the venoms found in cobras and other mamba snakes) and cone snail toxins, though anntoxin only has two disulfide bridges (a strong link that helps keep proteins folded) compared to three in the other types. The slight differences may account for why anntoxin does not block potassium channels as the other venoms do, but rather sodium channels important for signaling in sensory nerves.

Like these other venoms, though, anntoxin is fast-acting and potent; the researchers found it could produce rapid convulsions, paralysis and respiratory distress in several would-be predators like snakes and birds.

The similarities and differences make anntoxin a very valuable protein for further study, considering amphibians' special niche as the animals bridging the evolutionary land-water gap.

From the Article: "The first gene-encoded amphibian neurotoxin" by Dewen You, Jing Hong, Mingqiang Rong, Haining Yu, Songping Liang, Yufang Ma, Hailong Yang, Jing Wu, Donghai Lin and Ren Lai

Article link: http://www.jbc.org/cgi/content/abstract/284/33/22079

Corresponding Authors:

Ren Lai, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China; rlai@mail.kiz.ac.cn Donghai Lin, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; dhlin@mail.shcnc.ac.cn

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 12,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

For more information about ASBMB, see the Society's Web site at www.asbmb.org.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>