Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for dissected leaves

14.02.2014
Arabidopsis thaliana lost the RCO gene over the course of evolution and thus forms simple leaves

Spinach looks nothing like parsley, and basil bears no resemblance to thyme. Each plant has a typical leaf shape that can differ even within the same family. The information about what shape leaves will be is stored in the DNA.


The thale cress has simple oval leaves, the hairy bittercress, in contrast, develops complex leaves with leavelets.

© MPI f. Plant Breeding Research/ Lempe


Thale cress leaves lack the RCO-gene and remain simple (left). In the leaves of the hairy bittercress (middle) the RCO-gene inhibits cell growth between sites of leaflet formation (right; blue: active RCO-gene).

© MPI f. Plant Breeding Research/ Lempe

According to researchers at the Max Planck Institute for Plant Breeding Research in Cologne, the hairy bittercress (Cardamine hirsuta) has a particular gene to thank for its dissected leaves. This homeobox gene inhibits cell proliferation and growth between leaflets, allowing them to separate from each other. The thale cress Arabidopsis thaliana does not have this gene. Therefore, its leaves are not dissected, but simple and entire.

Miltos Tsiantis and his colleagues at the Max Planck Institute for Plant Breeding Research in Cologne discovered the new gene when comparing two plants from the Brassicaceae family: Cardamine hirsuta has dissected leaves that form leaflets and Arabidopsis thaliana has simple leaves. The researchers identified the RCO (REDUCED COMPLEXITY) gene, which makes leaves of the hairy bittercress more complex. Arabidopsis lacks this gene and, accordingly, lacks leaflets. RCO is only active in growing leaves. RCO ensures that cell proliferation and growth is prevented in areas of the leaf margin between sites of leaflet formation. “The leaves of Arabidopsis are simple and entire because growth is not inhibited by the RCO gene,” explains Tsiantis. “If we had not compared the two plants we would never have discovered this difference, as it is impossible to find a gene where none exists,” he adds.

The scientists first identified the RCO gene through a mutation in the hairy bittercress. In the absence of functional RCO the hairy bittercress can no longer produces leaflets. The RCO gene belongs to a cluster of three genes, which arose during evolution through the duplication of a single gene. In the thale cress, the original triple cluster now consists of a single gene. When the scientists return the RCO gene to the thale cress in the laboratory, evolution is partially reversed. “The simple oval leaves of Arabidopsis now develop deep lobes” says Tsiantis, “The fact that the leaf shape becomes complex again through the transfer of the RCO gene alone, shows that most of the apparatus for the formation of leaflets must still be present in the thale cress and was not lost with the RCO gene.”

The research team also examined the RCO sequence in greater detail and found it is a Homeobox gene. These genes function like genetic switches in that they activate or deactivate other genes. The scientists also demonstrated that RCO function is restricted to leaf shape; it does not decide whether leaves actually form. The loss of the RCO gene does not give rise to any other visible changes in the hairy bittercress. Therefore, its effect is limited to the inhibition of growth on the leaf margin. RCO does not work with the plant hormone auxin here. This specificity makes RCO a more likely driver of leaf shape evolution than any other genes identified to date. Tsiantis and his colleagues aim to decode its exact functionality in the months to come.

The scientists also examined the two genes which form a cluster with RCO and which arose in the course of evolution through the duplication of a precursor gene. They wanted to find out how the novel function of RCO in promoting leaf complexity arose. Apparently, the main functional difference lies in the control regions of the genes and not in the protein sequences. The control regions dictate when and how the relevant gene is read. If one or other of the two genes is subjected to the effect of the RCO control region, Arabidopsis makes complex leaves. Thus, the dissected leaves of the hairy bittercress are primarily owed to the control region of the RCO gene.

Contact
Prof. Dr. Miltos Tsiantis
Max Planck Institute for Plant Breeding Research, Köln
Phone: +49 221 5062-106
Fax: +49 221 5062-107
Email: tsiantis@mpipz.mpg.de
Original publication
Daniela Vlad et al.
Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene.

Science, February 14, 2014 (DOI: 10.1126/science.1248384)

Prof. Dr. Miltos Tsiantis | Max-Planck-Institute
Further information:
http://www.mpg.de/7924634/gene_for_plant_leaves_with_leaflets

More articles from Life Sciences:

nachricht Protein scaffold
27.05.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Seeing the action
27.05.2015 | University of California - Santa Barbara

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Stanford breakthrough heralds super-efficient light-based computers

28.05.2015 | Information Technology

22,500 students received a Germany Scholarship in 2014

28.05.2015 | Statistics

Endless oscillations

28.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>