Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovery set to help with mysterious paralysis of childhood

30.07.2012
Alternating hemiplegia of childhood (AHC) is a very rare disorder that causes paralysis that freezes one side of the body and then the other in devastating bouts that arise at unpredictable intervals. Seizures, learning disabilities and difficulty walking are common among patients with this diagnosis.

Researchers at Duke University Medical Center have now discovered that mutations in one gene cause the disease in the majority of patients with a diagnosis of AHC, and because of the root problem they discovered, a treatment may become possible.

The study was published online on July 29 in Nature Genetics.

AHC is almost always a sporadic disease, which means that typically no one else in the family has the disease, said Erin Heinzen, Ph.D., co-author of the study and Assistant Professor of Medicine in the Section of Medical Genetics. "Knowing that we were looking for genetic mutations in children with this disease that were absent in the healthy parents, we carefully compared the genomes of seven AHC patients and their unaffected parents. When we found new mutations in all seven children in the same gene we knew we had found the cause of this disease."

All of the mutations were found in a gene that encodes ATP1A3, one piece of a key transporter molecule that normally would move sodium and potassium ions across a channel between neurons (nerve cells) to regulate brain activity.

In a remarkably broad international collaborative effort, the authors partnered with three family foundations (USA, Italy and France), including scientists from 13 different countries, to study an additional 95 patients and showed over 75 percent had disease-causing mutations in the gene for ATP1A3.

"This study is an excellent example of how genetic research conducted on a world-wide scale really can make a difference for such a rare disorder as AHC," said Arn van den Maagdenberg, Ph.D., and co-author on the study and geneticist from Leiden University Medical Centre in the Netherlands. "It truly was an effort from many research groups that led to this remarkable discovery."

"This kind of discovery really brings home just what the human genome project and next-generation sequencing have made possible," said David Goldstein, Ph.D., Director of the Duke Center for Human Genome Variation and co-senior author on the study. "For a disease like this one with virtually no large families to study, it would have been very difficult to find the gene before next-generation sequencing."

"Ideally what you want from a study like this is a clear indication of how the mutations change protein function so you know how to screen for drugs that will restore normal function or compensate for the dysfunction," said Goldstein, who is also a Professor in Duke Molecular Genetics and Microbiology. "While there is considerably more work to do, our initial evaluation of the mutations suggests that they may alter the behavior of the transporter pump as opposed to reducing its activity, as do other mutations in the gene that cause a less severe neurological disease."

Co-senior author Mohamad Mikati, M.D., Professor of Pediatrics and of Neurobiology, and Chief of Pediatric Neurology at Duke, said, "Many years ago my work with other collaborators on a family with this disease proved that AHC can be caused by genetic factors, but until now we did not know the underlying gene abnormality.

"The finding that ATP1A3 mutations cause AHC will increase awareness of the disease and the ability to accurately diagnose patients," Mikati said. "While it may take a while for novel drugs to be developed to better treat this disease, we will see an immediate impact through specific testing for mutations in this gene when we suspect a case of AHC. This direct testing will prevent misdiagnoses that too often have caused patients to be treated with inappropriate medications."

Other authors worked at the University of Utah, Salt Lake City; Università Cattolica Sacro Cuore, Rome; UPMC Univ Paris, INSERM, CNRS and Groupe Hospitalier de la Pitié-Salpêtrière, in Paris; Leiden University Medical Centre, Leiden, The Netherlands; University of Melbourne, Melbourne, Australia; University Hospitals of Lyon, France; University of Chicago, Illinois; University of California, San Francisco; Rijnland Hospital, Leiderdorp, The Netherlands; Sydney Children's Hospital, Randwick, and University of Sydney, New South Wales, Australia; Royal Hobart Hospital, Hobart, Australia; Our Lady's Children's Hospital, Crumlin, and the Childrens University Hospital, Dublin, Ireland; Rigshospitalet, University of Copenhagen; CRNL, CNRS INSERM, in Lyon, France; and UCL Institute of Neurology, London.

The study was funded by the Center for Human Genome Variation, the Alternating Hemiplegia of Childhood Foundation, the ENRAH for SMEs Consortium grant of the European Commission Research Programme, Association Française de l'Hémiplégie Alternante, A.I.S.EA Onlus, CMSB within the Netherlands Genomics Initiative, the Wellcome Trust, and the University of Utah.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>