Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene discovery links obesity to the brain

29.06.2009
Einstein researchers part of international consortium

A variation in a gene that is active in the central nervous system is associated with increased risk for obesity, according to an international study in which Albert Einstein College of Medicine of Yeshiva University played a major role. The research adds to evidence that genes influence appetite and that the brain plays a key role in obesity.

Robert Kaplan, Ph.D., associate professor of epidemiology & population health, helped direct the international study, which involved 34 research institutions and is published online in PLoS Genetics. Dr. Kaplan and his U.S. and European colleagues found that people who have inherited the gene variant NRXN3 have a 10-15 percent increased risk of being obese compared with people who do not have the variant.

The researchers examined data from eight studies involving genes and body weight. These studies included more than 31,000 people of European origin, ages 45 to 76, representing a broad range of dietary habits and health behaviors.

After analyzing more than two million regions of the human genome, the researchers found that the NRXN3 gene variant ─ previously associated with alcohol dependence, cocaine addiction, and illegal substance abuse ─ also predicts the tendency to become obese. Altogether, researchers found the gene variant in 20 percent of the people studied.

"We've known for a long time that obesity is an inherited trait, but specific genes linked to it have been difficult to find," says Dr. Kaplan. "A lot of factors ─ the types and quantity of foods you eat, how much you exercise, and how you metabolize foods, for example ─ affect your body shape and size. So we are looking for genes that may have a small role to play in a complex situation."

NRXN3 is the third obesity-associated gene to be identified. The fact that all three genes are highly active in encoding brain proteins is significant, says Dr. Kaplan. "Considering how many factors are involved in obesity, it is interesting that research is increasingly pointing to the brain as being very important in its development," he said.

Identifying obesity genes could help in preventing the condition and lead to treatments for it. "Someday we may be able to incorporate several obesity genes into a genetic test to identify people at risk of becoming obese and alert them to the need to watch their diet and to exercise," Dr. Kaplan said. "Also, we may eventually see drugs that target the molecular pathways through which obesity genes exert their influence."

Since NRXN3 is active in the brain and also implicated in addiction, these traits may share some neurologic underpinnings. "Although we don't have data to suggest a direct connection between drug abuse and obesity, we can indirectly infer a link because both traits have this gene in common," Dr. Kaplan said.

The paper, "NRXN3 is a Novel Locus for Waist Circumference: A Genome-wide Association Study from the CHARGE Consortium," appears online in PLoS Genetics on June 26th.

Other lead collaborators who worked with Dr. Kaplan on the study included Nancy L. Heard-Costa and L. Adrienne Cupples of Boston University; M. Carola Zillikens, Ben A. Oostra and Cornelia M. van Duijn of Erasmus Medical Center; Keri L. Monda and Kari E. North of the University of North Carolina at Chapel Hill; Åsa Johansson of Uppsala University; Tamara B. Harris and Caroline S. Fox of the National Institutes of Health; Mao Fu and Jeffrey R. O'Connell of the University of Maryland; Talin Haritunians of Cedars-Sinai Medical Center; Mary F. Feitosa and Ingrid B. Borecki of Washington University School of Medicine; and Vilmundur Gudnason of the University of Iceland. Drs. Fox and North are the corresponding authors.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>