Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene discovery could lead to better soybean varieties for northern United States


Researchers from Purdue University and the University of Nebraska-Lincoln have discovered a soybean gene whose mutation affects plant stem growth, a finding that could lead to the development of improved soybean cultivars for the northern United States.

Purdue agronomy professor Jianxin Ma (pronounced Jen-SHIN' Ma) and collaborators identified a gene known as Dt2, which causes semideterminacy in soybean plants. Semideterminate soybean plants - mid-size plants that continue vegetative growth even after flowering - can produce as many or more pods than current northern cultivars but do not grow as tall. Their reduced height makes them more resistant to lodging, a bending or breaking of the main plant stem.

"This gene could help us improve the yield potential and adaptability of soybeans for specific growing areas," Ma said. "We can now focus on developing a variety of elite semideterminate soybean cultivars, which could perform very well in high-yielding, irrigated environments such as Nebraska and northeastern Indiana."

Soybean cultivars are often divided into two groups: indeterminate - tall plants whose main stem continues to grow after flowering - and determinate - shorter, bushier plants whose main stem halts growth when blossoms begin to form.

Determinate soybean plants thrive in the longer growing season of the south while indeterminate plants' overlapping vegetative and reproductive stages make them better suited to the north. But the height of indeterminate cultivars renders them prone to lodging.

For northern soybean producers, semideterminate soybean plants could represent a "Goldilocks" cultivar, a "just right" alternative between the two. Semideterminate soybeans are easy to manage, have similar or better yields than indeterminate plants and can handle a short growing season, Ma said.

Only one semideterminate soybean cultivar, NE3001, is common in the United States. Having pinpointed Dt2 will enable Ma and his researchers to use natural plant breeding methods to develop a variety of semi-determinate cultivars.

"The potential for soybean yield productivity in the U.S. has not been fully explored, in part because of the lack of semideterminate cultivars," he said. "We're now working on converting high-yielding indeterminate cultivars to semideterminate types to test their yield potential."

Ma - who had previously identified Dt1, the gene that causes indeterminancy in soybeans - used an integrated genetic approach to isolate and characterize Dt2. After identifying the gene, he inserted it into indeterminate cultivars to confirm that it caused the plants to become semideterminate. Dt2 suppresses the expression level of Dt1, causing soybean plants to grow shorter.

Ma said this type of mutation appears to be unique to soybeans as semideterminancy in other plants such as tomatoes and chickpeas is caused by a different genetic mechanism.

Study co-author James Specht, a professor of agronomy and horticulture at the University of Nebraska-Lincoln, said the identification of Dt2 gives soybean breeders a powerful tool for breeding new cultivars.

"This provides breeders with a perfect genetic marker for identifying semideterminancy in soybean seeds and seedlings," he said.

The paper was published in The Plant Cell and is available at

Other collaborators on the study are Thomas Clemente at the University of Nebraska-Lincoln, Randall Nelson at the U.S. Department of Agriculture and the University of Illinois and Lijuan Qiu at the Chinese Academy of Agricultural Sciences.

Funding for the research was provided mainly by the United Soybean Board and partially by the Partnership for Research and Education in Plant Breeding and Genetics program of the U.S. Department of Agriculture’s National Institute of Food and Agriculture, Ag Alumni Seed, AgReliant Genetics, Beck’s Hybrids, ConAgraFoods, Dow AgroSciences, Indiana Crop Improvement Association and Pioneer Hi-Bred International.  

Writer: Natalie van Hoose, 765-496-2050,

Sources: Jianxin Ma, 765-496-3662, 

James Specht, 402-472-1536,  

Related website:

Purdue University Department of Agronomy


Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminancy in soybean

Jieqing Ping 1; Yunfeng Liu 1; Lianjun Sun 1; Meixia Zhao 1; Yinghui Li 2; Maoyun She 1; Yi Sui 1; Feng Lin 1; Xiaodong Liu 1; Zongxiang Tang 1; Hanh Nguyen 3; Zhixi Tian 1; Lijuan Qiu 2; Randall L. Nelson 4; Thomas E. Clemente 3; James E. Specht 3; Jianxin Ma 1

1 Department of Agronomy, Purdue University, West Lafayete, Indiana 47907

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Department of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68583

4 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801


Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminancy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybeans. 

Ag Communications: (765) 494-2722;
Keith Robinson,

Natalie van Hoose | Eurek Alert!
Further information:

Further reports about: Agronomy Arabidopsis Genetics Horticulture soybean soybean plants

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>