Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovery could lead to better soybean varieties for northern United States

16.07.2014

Researchers from Purdue University and the University of Nebraska-Lincoln have discovered a soybean gene whose mutation affects plant stem growth, a finding that could lead to the development of improved soybean cultivars for the northern United States.

Purdue agronomy professor Jianxin Ma (pronounced Jen-SHIN' Ma) and collaborators identified a gene known as Dt2, which causes semideterminacy in soybean plants. Semideterminate soybean plants - mid-size plants that continue vegetative growth even after flowering - can produce as many or more pods than current northern cultivars but do not grow as tall. Their reduced height makes them more resistant to lodging, a bending or breaking of the main plant stem.

"This gene could help us improve the yield potential and adaptability of soybeans for specific growing areas," Ma said. "We can now focus on developing a variety of elite semideterminate soybean cultivars, which could perform very well in high-yielding, irrigated environments such as Nebraska and northeastern Indiana."

Soybean cultivars are often divided into two groups: indeterminate - tall plants whose main stem continues to grow after flowering - and determinate - shorter, bushier plants whose main stem halts growth when blossoms begin to form.

Determinate soybean plants thrive in the longer growing season of the south while indeterminate plants' overlapping vegetative and reproductive stages make them better suited to the north. But the height of indeterminate cultivars renders them prone to lodging.

For northern soybean producers, semideterminate soybean plants could represent a "Goldilocks" cultivar, a "just right" alternative between the two. Semideterminate soybeans are easy to manage, have similar or better yields than indeterminate plants and can handle a short growing season, Ma said.

Only one semideterminate soybean cultivar, NE3001, is common in the United States. Having pinpointed Dt2 will enable Ma and his researchers to use natural plant breeding methods to develop a variety of semi-determinate cultivars.

"The potential for soybean yield productivity in the U.S. has not been fully explored, in part because of the lack of semideterminate cultivars," he said. "We're now working on converting high-yielding indeterminate cultivars to semideterminate types to test their yield potential."

Ma - who had previously identified Dt1, the gene that causes indeterminancy in soybeans - used an integrated genetic approach to isolate and characterize Dt2. After identifying the gene, he inserted it into indeterminate cultivars to confirm that it caused the plants to become semideterminate. Dt2 suppresses the expression level of Dt1, causing soybean plants to grow shorter.

Ma said this type of mutation appears to be unique to soybeans as semideterminancy in other plants such as tomatoes and chickpeas is caused by a different genetic mechanism.

Study co-author James Specht, a professor of agronomy and horticulture at the University of Nebraska-Lincoln, said the identification of Dt2 gives soybean breeders a powerful tool for breeding new cultivars.

"This provides breeders with a perfect genetic marker for identifying semideterminancy in soybean seeds and seedlings," he said.

The paper was published in The Plant Cell and is available at http://www.plantcell.org/content/early/2014/07/08/tpc.114.126938.full.pdf+html

Other collaborators on the study are Thomas Clemente at the University of Nebraska-Lincoln, Randall Nelson at the U.S. Department of Agriculture and the University of Illinois and Lijuan Qiu at the Chinese Academy of Agricultural Sciences.

Funding for the research was provided mainly by the United Soybean Board and partially by the Partnership for Research and Education in Plant Breeding and Genetics program of the U.S. Department of Agriculture’s National Institute of Food and Agriculture, Ag Alumni Seed, AgReliant Genetics, Beck’s Hybrids, ConAgraFoods, Dow AgroSciences, Indiana Crop Improvement Association and Pioneer Hi-Bred International.  

Writer: Natalie van Hoose, 765-496-2050, nvanhoos@purdue.edu

Sources: Jianxin Ma, 765-496-3662, maj@purdue.edu 

James Specht, 402-472-1536, jspecht1@unl.edu  

Related website:

Purdue University Department of Agronomy

ABSTRACT

Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminancy in soybean

Jieqing Ping 1; Yunfeng Liu 1; Lianjun Sun 1; Meixia Zhao 1; Yinghui Li 2; Maoyun She 1; Yi Sui 1; Feng Lin 1; Xiaodong Liu 1; Zongxiang Tang 1; Hanh Nguyen 3; Zhixi Tian 1; Lijuan Qiu 2; Randall L. Nelson 4; Thomas E. Clemente 3; James E. Specht 3; Jianxin Ma 1

1 Department of Agronomy, Purdue University, West Lafayete, Indiana 47907

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Department of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68583

4 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801

E-mail: maj@purdue.edu 

Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminancy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybeans. 

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Natalie van Hoose | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q3/gene-discovery-could-lead-to-better-soybean-varieties-for-northern-united-states.html

Further reports about: Agronomy Arabidopsis Genetics Horticulture soybean soybean plants

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>