Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovery could lead to better soybean varieties for northern United States

16.07.2014

Researchers from Purdue University and the University of Nebraska-Lincoln have discovered a soybean gene whose mutation affects plant stem growth, a finding that could lead to the development of improved soybean cultivars for the northern United States.

Purdue agronomy professor Jianxin Ma (pronounced Jen-SHIN' Ma) and collaborators identified a gene known as Dt2, which causes semideterminacy in soybean plants. Semideterminate soybean plants - mid-size plants that continue vegetative growth even after flowering - can produce as many or more pods than current northern cultivars but do not grow as tall. Their reduced height makes them more resistant to lodging, a bending or breaking of the main plant stem.

"This gene could help us improve the yield potential and adaptability of soybeans for specific growing areas," Ma said. "We can now focus on developing a variety of elite semideterminate soybean cultivars, which could perform very well in high-yielding, irrigated environments such as Nebraska and northeastern Indiana."

Soybean cultivars are often divided into two groups: indeterminate - tall plants whose main stem continues to grow after flowering - and determinate - shorter, bushier plants whose main stem halts growth when blossoms begin to form.

Determinate soybean plants thrive in the longer growing season of the south while indeterminate plants' overlapping vegetative and reproductive stages make them better suited to the north. But the height of indeterminate cultivars renders them prone to lodging.

For northern soybean producers, semideterminate soybean plants could represent a "Goldilocks" cultivar, a "just right" alternative between the two. Semideterminate soybeans are easy to manage, have similar or better yields than indeterminate plants and can handle a short growing season, Ma said.

Only one semideterminate soybean cultivar, NE3001, is common in the United States. Having pinpointed Dt2 will enable Ma and his researchers to use natural plant breeding methods to develop a variety of semi-determinate cultivars.

"The potential for soybean yield productivity in the U.S. has not been fully explored, in part because of the lack of semideterminate cultivars," he said. "We're now working on converting high-yielding indeterminate cultivars to semideterminate types to test their yield potential."

Ma - who had previously identified Dt1, the gene that causes indeterminancy in soybeans - used an integrated genetic approach to isolate and characterize Dt2. After identifying the gene, he inserted it into indeterminate cultivars to confirm that it caused the plants to become semideterminate. Dt2 suppresses the expression level of Dt1, causing soybean plants to grow shorter.

Ma said this type of mutation appears to be unique to soybeans as semideterminancy in other plants such as tomatoes and chickpeas is caused by a different genetic mechanism.

Study co-author James Specht, a professor of agronomy and horticulture at the University of Nebraska-Lincoln, said the identification of Dt2 gives soybean breeders a powerful tool for breeding new cultivars.

"This provides breeders with a perfect genetic marker for identifying semideterminancy in soybean seeds and seedlings," he said.

The paper was published in The Plant Cell and is available at http://www.plantcell.org/content/early/2014/07/08/tpc.114.126938.full.pdf+html

Other collaborators on the study are Thomas Clemente at the University of Nebraska-Lincoln, Randall Nelson at the U.S. Department of Agriculture and the University of Illinois and Lijuan Qiu at the Chinese Academy of Agricultural Sciences.

Funding for the research was provided mainly by the United Soybean Board and partially by the Partnership for Research and Education in Plant Breeding and Genetics program of the U.S. Department of Agriculture’s National Institute of Food and Agriculture, Ag Alumni Seed, AgReliant Genetics, Beck’s Hybrids, ConAgraFoods, Dow AgroSciences, Indiana Crop Improvement Association and Pioneer Hi-Bred International.  

Writer: Natalie van Hoose, 765-496-2050, nvanhoos@purdue.edu

Sources: Jianxin Ma, 765-496-3662, maj@purdue.edu 

James Specht, 402-472-1536, jspecht1@unl.edu  

Related website:

Purdue University Department of Agronomy

ABSTRACT

Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminancy in soybean

Jieqing Ping 1; Yunfeng Liu 1; Lianjun Sun 1; Meixia Zhao 1; Yinghui Li 2; Maoyun She 1; Yi Sui 1; Feng Lin 1; Xiaodong Liu 1; Zongxiang Tang 1; Hanh Nguyen 3; Zhixi Tian 1; Lijuan Qiu 2; Randall L. Nelson 4; Thomas E. Clemente 3; James E. Specht 3; Jianxin Ma 1

1 Department of Agronomy, Purdue University, West Lafayete, Indiana 47907

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Department of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68583

4 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801

E-mail: maj@purdue.edu 

Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminancy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybeans. 

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Natalie van Hoose | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q3/gene-discovery-could-lead-to-better-soybean-varieties-for-northern-united-states.html

Further reports about: Agronomy Arabidopsis Genetics Horticulture soybean soybean plants

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>