Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene delivery method: magnetic nanoparticles

31.05.2013
New research in The FASEB Journal suggests that with magnetic guidance, specially designed nanoparticles can help deliver genes to injured arteries, using stents as the delivery platform

Stent angioplasty saves lives, but there often are side effects and complications related to the procedure, such as arterial restenosis and thrombosis.

In the June 2013 issue of The FASEB Journal, however, scientists report that they have discovered a new nanoparticle gene delivery method that may overcome current limitations of gene therapy vectors and prevent complications associated with the stenting procedure. Specifically, this strategy uses stents as a platform for magnetically targeted gene delivery, where genes are moved to cells at arterial injury locations without causing unwanted side effects to other organs. Additionally, magnetic nanoparticles developed and characterized in the study also protect genes and help them reach their target in active form, which also is one of the key challenges in any gene therapy.

"This study can help address a number of barriers to translation of experimental gene therapeutic approaches to clinical practice," said Michael Chorny, Ph.D., a researcher involved in the work from the Division of Cardiology at the Abramson Pediatric Research Center at The Children's Hospital of Philadelphia in Pennsylvania. "Bringing gene therapy closer to clinical use is a step toward developing safer and more effective ways for treating cardiovascular disease."

To make this technique possible, Chorny and colleagues used in vitro vascular cells to demonstrate the ability to effectively deliver genes using biocompatible nanoparticles and magnetic force without causing adverse effects. Although effective gene transfer in these cells has been difficult to achieve historically, this study demonstrated that magnetically guided "gene-impregnated" nanoparticles delivered their cargo effectively, especially compared to conventional gene delivery vectors. Next, researchers explored magnetically targeted gene delivery by applying these nanoparticles to stented arteries in rats. The nanoparticle-mediated expression of stent-targeted genes was shown to be greatly enhanced in treated animals when compared to control groups treated with nanoparticles without using the magnetic conditions, or with an equivalent dose of a conventional gene delivery vector. Genes delivered using the magnetically targeted nanoparticles were also expressed at considerably higher levels in the stented arteries compared to other organs and tissues.

"This approach is novel and exciting, and goes to show that investments in basic science across disciplines pay off in time," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "When the first nanoparticles were developed and when the first correctable human disease gene was identified, no one could have ever known that these two advances would come together in a way that might one-day save lives."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 26 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to its member societies and through collaborative advocacy.

Details: Michael Chorny, Ilia Fishbein, Jillian E. Tengood, Richard F. Adamo, Ivan S. Alferiev, and Robert J. Levy. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. FASEB J June 2013 27:2198-2206; doi:10.1096/fj.12-224659 ; http://www.fasebj.org/content/27/6/2198.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>