Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene gives clues to self-injurious behavior in rare disorder

28.07.2011
In humans, inherited mutations in a gene called HPRT1 lead to very specific self-destructive behavior. Boys with Lesch-Nyhan disease experience uncontrollable urges to bite their fingers, slam their arms into doorways and otherwise harm themselves.

Puzzlingly, mice with mutations in the same gene don't behave differently than normal mice. Researchers at Emory University School of Medicine have identified a gene related to HPRT1, present in humans but not in mice that helps explain this discrepancy.

The results were published this week by the journal PLoS One.

Mice missing HPRT1 and engineered with a copy of the related human gene, called PRTFDC1, are more aggressive and, under the influence of amphetamines, display repetitive behavior resembling nail biting.

"Other strains of mice don't do this, even under the influence of amphetamines," says first author Alaine Keebaugh, an Emory postdoctoral fellow. "It's not exactly the same as the finger-biting seen in Lesch-Nyhan patients, but they're close enough that we think it provides some insight into the biology. It suggests that PRTFDC1 could be a target for treating the disease."

Keebaugh began researching HPRT1 and PRTFDC1 while a graduate student in the laboratory of James Thomas, PhD, former assistant professor of human genetics at Emory University School of Medicine. The co-first author is Emory postdoctoral fellow Heather Mitchell.

HPRT1 was the first gene to be "knocked out" when scientists were first developing the technique in the 1980s, an accomplishment that earned Mario Capecchi and Oliver Smithies the Nobel Prize in Medicine.

"HPRT1 has a special place in the history of genetics because of this," Keebaugh says. "It also shows that knockout mice don't always exactly parallel human disease."

The HPRT1 gene is located on the X chromosome. Males are vulnerable to Lesch-Nyhan disease (and other X-linked disorders) because they have only one X chromosome. HPRT1 encodes an enzyme that recycles purines, which are building blocks of DNA.

The PRTFDC1 gene looks like HPRT1, and apparently comes from a duplication of an ancestor gene millions of years ago. All mammals Keebaugh examined except mice have working copies of PRTFDC1. It's not clear whether the protein encoded by PRTFDC1 also recycles purines, she says.

"In mice, the presence of PRTFDC1 seems to enhance the effects of not having HPRT1," she says. "This suggests the two proteins are not just doing the same things. One may be regulating the other, which is something we want to investigate further."

In humans, the absence of HPRT1 leads to overabundant purines, which appears to perturb development of certain parts of the brain. In addition, the building blocks are broken down into uric acid, which accumulates in the body and can cause painful swelling of the joints.

These gout-like symptoms can be treated with medication, but the striking behavior and other neurological problems don't go away. Lesch-Nyhan patients tend to have delayed development and stiff movements and are sometimes unable to walk. They have a deficiency of the chemical messenger dopamine in the basal ganglia, the same part of the brain affected by Parkinson's disease.

Mice without HPRT1 do have reduced dopamine in the basal ganglia and are more sensitive to amphetamines, which work by enhancing dopamine's effects in the brain. This link with dopamine is what led Keebaugh to test the effects of amphetamines on the mice.

Mice missing HPRT1 and with added PRTFDC1 displayed a unique behavior: they had a "distinctive hunched posture," bobbing their heads and appearing to bite their nails. However, they did not actually damage their paws.

Keebaugh says she is continuing to study the function of PRTFDC1 with the aim of understanding how Lesch-Nyhan disease develops and identifying potential treatments.

The research was supported by the National Institutes of Health.

Reference: A.C. Keebaugh, H.A. Mitchell, M. Gaval-Cruz, K.G. Freeman, G.L. Edwards, D. Weinshenker, and J.W. Thomas. PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse. PLOS One (2011).

Writer: Quinn Eastman

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>