Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene gives clues to self-injurious behavior in rare disorder

28.07.2011
In humans, inherited mutations in a gene called HPRT1 lead to very specific self-destructive behavior. Boys with Lesch-Nyhan disease experience uncontrollable urges to bite their fingers, slam their arms into doorways and otherwise harm themselves.

Puzzlingly, mice with mutations in the same gene don't behave differently than normal mice. Researchers at Emory University School of Medicine have identified a gene related to HPRT1, present in humans but not in mice that helps explain this discrepancy.

The results were published this week by the journal PLoS One.

Mice missing HPRT1 and engineered with a copy of the related human gene, called PRTFDC1, are more aggressive and, under the influence of amphetamines, display repetitive behavior resembling nail biting.

"Other strains of mice don't do this, even under the influence of amphetamines," says first author Alaine Keebaugh, an Emory postdoctoral fellow. "It's not exactly the same as the finger-biting seen in Lesch-Nyhan patients, but they're close enough that we think it provides some insight into the biology. It suggests that PRTFDC1 could be a target for treating the disease."

Keebaugh began researching HPRT1 and PRTFDC1 while a graduate student in the laboratory of James Thomas, PhD, former assistant professor of human genetics at Emory University School of Medicine. The co-first author is Emory postdoctoral fellow Heather Mitchell.

HPRT1 was the first gene to be "knocked out" when scientists were first developing the technique in the 1980s, an accomplishment that earned Mario Capecchi and Oliver Smithies the Nobel Prize in Medicine.

"HPRT1 has a special place in the history of genetics because of this," Keebaugh says. "It also shows that knockout mice don't always exactly parallel human disease."

The HPRT1 gene is located on the X chromosome. Males are vulnerable to Lesch-Nyhan disease (and other X-linked disorders) because they have only one X chromosome. HPRT1 encodes an enzyme that recycles purines, which are building blocks of DNA.

The PRTFDC1 gene looks like HPRT1, and apparently comes from a duplication of an ancestor gene millions of years ago. All mammals Keebaugh examined except mice have working copies of PRTFDC1. It's not clear whether the protein encoded by PRTFDC1 also recycles purines, she says.

"In mice, the presence of PRTFDC1 seems to enhance the effects of not having HPRT1," she says. "This suggests the two proteins are not just doing the same things. One may be regulating the other, which is something we want to investigate further."

In humans, the absence of HPRT1 leads to overabundant purines, which appears to perturb development of certain parts of the brain. In addition, the building blocks are broken down into uric acid, which accumulates in the body and can cause painful swelling of the joints.

These gout-like symptoms can be treated with medication, but the striking behavior and other neurological problems don't go away. Lesch-Nyhan patients tend to have delayed development and stiff movements and are sometimes unable to walk. They have a deficiency of the chemical messenger dopamine in the basal ganglia, the same part of the brain affected by Parkinson's disease.

Mice without HPRT1 do have reduced dopamine in the basal ganglia and are more sensitive to amphetamines, which work by enhancing dopamine's effects in the brain. This link with dopamine is what led Keebaugh to test the effects of amphetamines on the mice.

Mice missing HPRT1 and with added PRTFDC1 displayed a unique behavior: they had a "distinctive hunched posture," bobbing their heads and appearing to bite their nails. However, they did not actually damage their paws.

Keebaugh says she is continuing to study the function of PRTFDC1 with the aim of understanding how Lesch-Nyhan disease develops and identifying potential treatments.

The research was supported by the National Institutes of Health.

Reference: A.C. Keebaugh, H.A. Mitchell, M. Gaval-Cruz, K.G. Freeman, G.L. Edwards, D. Weinshenker, and J.W. Thomas. PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse. PLOS One (2011).

Writer: Quinn Eastman

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>