Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene gives clues to self-injurious behavior in rare disorder

28.07.2011
In humans, inherited mutations in a gene called HPRT1 lead to very specific self-destructive behavior. Boys with Lesch-Nyhan disease experience uncontrollable urges to bite their fingers, slam their arms into doorways and otherwise harm themselves.

Puzzlingly, mice with mutations in the same gene don't behave differently than normal mice. Researchers at Emory University School of Medicine have identified a gene related to HPRT1, present in humans but not in mice that helps explain this discrepancy.

The results were published this week by the journal PLoS One.

Mice missing HPRT1 and engineered with a copy of the related human gene, called PRTFDC1, are more aggressive and, under the influence of amphetamines, display repetitive behavior resembling nail biting.

"Other strains of mice don't do this, even under the influence of amphetamines," says first author Alaine Keebaugh, an Emory postdoctoral fellow. "It's not exactly the same as the finger-biting seen in Lesch-Nyhan patients, but they're close enough that we think it provides some insight into the biology. It suggests that PRTFDC1 could be a target for treating the disease."

Keebaugh began researching HPRT1 and PRTFDC1 while a graduate student in the laboratory of James Thomas, PhD, former assistant professor of human genetics at Emory University School of Medicine. The co-first author is Emory postdoctoral fellow Heather Mitchell.

HPRT1 was the first gene to be "knocked out" when scientists were first developing the technique in the 1980s, an accomplishment that earned Mario Capecchi and Oliver Smithies the Nobel Prize in Medicine.

"HPRT1 has a special place in the history of genetics because of this," Keebaugh says. "It also shows that knockout mice don't always exactly parallel human disease."

The HPRT1 gene is located on the X chromosome. Males are vulnerable to Lesch-Nyhan disease (and other X-linked disorders) because they have only one X chromosome. HPRT1 encodes an enzyme that recycles purines, which are building blocks of DNA.

The PRTFDC1 gene looks like HPRT1, and apparently comes from a duplication of an ancestor gene millions of years ago. All mammals Keebaugh examined except mice have working copies of PRTFDC1. It's not clear whether the protein encoded by PRTFDC1 also recycles purines, she says.

"In mice, the presence of PRTFDC1 seems to enhance the effects of not having HPRT1," she says. "This suggests the two proteins are not just doing the same things. One may be regulating the other, which is something we want to investigate further."

In humans, the absence of HPRT1 leads to overabundant purines, which appears to perturb development of certain parts of the brain. In addition, the building blocks are broken down into uric acid, which accumulates in the body and can cause painful swelling of the joints.

These gout-like symptoms can be treated with medication, but the striking behavior and other neurological problems don't go away. Lesch-Nyhan patients tend to have delayed development and stiff movements and are sometimes unable to walk. They have a deficiency of the chemical messenger dopamine in the basal ganglia, the same part of the brain affected by Parkinson's disease.

Mice without HPRT1 do have reduced dopamine in the basal ganglia and are more sensitive to amphetamines, which work by enhancing dopamine's effects in the brain. This link with dopamine is what led Keebaugh to test the effects of amphetamines on the mice.

Mice missing HPRT1 and with added PRTFDC1 displayed a unique behavior: they had a "distinctive hunched posture," bobbing their heads and appearing to bite their nails. However, they did not actually damage their paws.

Keebaugh says she is continuing to study the function of PRTFDC1 with the aim of understanding how Lesch-Nyhan disease develops and identifying potential treatments.

The research was supported by the National Institutes of Health.

Reference: A.C. Keebaugh, H.A. Mitchell, M. Gaval-Cruz, K.G. Freeman, G.L. Edwards, D. Weinshenker, and J.W. Thomas. PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse. PLOS One (2011).

Writer: Quinn Eastman

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>