Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two Gene Classes Linked to New Prion Formation

30.05.2011
Unlocking the mechanisms that cause neurodegenerative prion diseases may require a genetic key, suggest new findings reported by University of Illinois at Chicago distinguished professor of biological sciences Susan Liebman.

Prions can turn a normal protein into a misfolded form. One prion in mammals promotes progressive neurodegenerative disorders like "mad cow" disease that often prove fatal. But how this process happens remains an open question for scientists.

Prions have been found to exist in a wide range of organisms. Those in brewer's yeast, which researchers like Liebman study, provide critical insight into how prions work.

Prion proteins in yeast aggregate, while non-prion proteins do not. Aggregation of new prions happens spontaneously -- but, in the natural world, very slowly.

Anita Manogaran, a former UIC research assistant professor in biological sciences, working with Liebman, sped-up prion formation to identify genes important in the process. The researchers were also able to monitor different stages of prion appearance by tagging prion proteins with another protein that fluoresces green. Cells in the process of forming prions had fluorescent rings, which could give rise to cells with prions.

"We learned there are some genes important for the generation of prions," Liebman said.

Some 400 yeast genes were screened for the ability to prevent the new appearance of yeast prion proteins.

"Through a number of screens, we came down to a much smaller number (of genes) that inhibited prion appearance," Liebman said. These genes fell into two classes -- one that could still make the rings, which is the hallmark of the beginning of prion aggregation. But the other class of genes had trouble forming rings, Liebman said.

Liebman and Manogaran also looked beyond new prion formation to see if these same genes had an effect on toxicity associated with a protein that causes Huntington's disease -- a fatal human neurodegenerative disorder.

"We found that genes that could make rings also were more toxic in the presence of the Huntington's disease protein," Liebman said. "If no rings were made, they were less toxic."

The full implications of the findings are not yet understood, Liebman cautioned.

"The more we understand about these mechanisms and the genes that are involved, the more we'll be able to understand the new appearance of prion disease -- like Creutzfeldt-Jakob and 'mad cow' -- and Huntington's disease. The more we understand what affects toxicity, the more we'll understand why these are toxic."

The findings were reported in the May 19 issue of PLoS Genetics.

Manogaran, now at the University of Wisconsin-Milwaukee, UIC research assistant Joo Hong and former UIC undergraduate student Joan Hufana worked with Liebman on the project. Other co-authors of the paper include Jens Tyedmers of the University of Heidelberg and Susan Lindquist of the Massachusetts Institute of Technology.

Major funding was provided by the National Institutes of Health.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Manogaran Prion-Protein UIC mad cow neurodegenerative disorder prion protein

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>