Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene change identifies brain cancer patients that respond better to treatment

01.06.2011
New research proves that a change in a particular gene can identify which patients with a specific kind of brain cancer will respond better to treatment. Testing for the gene can distinguish patients with a more- or less-aggressive form of glioblastoma, the most common and an often-fatal type of primary brain cancer, and help guide therapy, the researchers say.

The prospective study looked at a gene called MGMT in tumors removed from 833 glioblastoma patients. It showed that when the gene promoter is altered by a chemical change called methylation, patients respond better to treatment.

"We show that MGMT methylation represents a new genetic test that can predict clinical outcomes in glioblastoma patients who have been treated with radiation combined with the chemotherapeutic drug temozolomide," says coauthor Dr. Arnab Chakravarti, chair and professor of Radiation Oncology and co-director of the brain tumor program at the Ohio State University Comprehensive Cancer Center – Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute (OSUCCC – James).

"Clearly, all glioblastomas are not the same. Rather, they are a collection of different molecular and genetic entities that behave uniquely and require personalized treatment," says Chakravarti, who is the translational-research study chair for the study.

Principal investigator Dr. Mark Gilbert, professor of neuro-oncology at M.D. Anderson Cancer Center, will present the research June 5, 2011, at the 2011 American Society of Clinical Oncology annual meeting in Chicago. It comes from a prospective international phase III clinical trial sponsored by the Radiation Therapy Oncology Group (RTOG).

"Our study confirms the prognostic significance of MGMT gene methylation and demonstrates the feasibility of prospective tumor-tissue collection, molecular stratification and collection of patient outcomes in a large transatlantic intergroup trial," Gilbert says.

A tentative indication that MGMT methylation status might have prognostic importance emerged from an earlier retrospective study sponsored by the European Organisation for Research and Treatment of Cancer (EORTC).

The current study (RTOG 0525) validates that finding. Patients with tumors carrying the methylated gene had an overall survival of 21 months versus 14 months for those with the unmethylated gene. The difference in progression-free survival – the period after treatment during which cancer does not worsen – was 8.7 months and 5.7 months for methylated versus unmethylated tumors respectively. The narrow difference, Chakravarti says, indicates that patients with the methylated gene had slower growing tumors.

About 18,500 new cases of glioblastoma multiforme are expected annually in the U.S., and 12,760 Americans are expected to die of the disease. Symptoms often include headache, seizures and motor or sensory changes. A brain scan detects the tumor. After a surgeon removes the tumor, it can be tested for MGMT methylation.

"Patients with the methylated gene could receive the standard treatment, radiation therapy plus the chemotherapeutic drug temozolomide," Chakravarti says. "Those with an unmethylated gene might receive an experimental treatment through a clinical trial."

Research is now needed, he says, to learn whether MGMT contributes directly to tumor aggressiveness, or whether it is just an indicator of other changes that cause tumor aggressiveness. "If the gene itself helps cause aggressive disease, MGMT or related DNA repair pathways might be an important targets for a novel therapies," Chakravarti says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer Radiation chemotherapeutic drug therapeutic drug

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>