Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that causes some cases of familial ALS discovered

10.12.2010
Finding could lead to new insight in understanding, treating more common forms of this fatal neurological disease

Using a new gene sequencing method, a team of researchers led by scientists from Johns Hopkins and the National Institutes of Health has discovered a gene that appears to cause some instances of familial amyotrophic lateral sclerosis (ALS). The finding could lead to novel ways to treat the more common form of this fatal neurodegenerative disease, which kills the vast majority of the nearly 6,000 Americans diagnosed with ALS every year.

Researchers don’t know exactly what causes ALS, which destroys the motor neurons that control the movement of all the body’s muscles, including those that control breathing. However, studies into the familial form of the disease, which affects 5 percent to 10 percent of those diagnosed with the disease, could shed some light on why motor neurons die in all types of ALS, says study leader Bryan J. Traynor, M.D., an assistant professor in the Department of Neurology at the Johns Hopkins University School of Medicine and chief of the Neuromuscular Diseases Research Group at the National Institutes of Health.

“If you look at the spectrum of diseases caused by dysfunctional genes, our knowledge of almost all of them has grown out of the familial form of those diseases,” Traynor says. By finding the genes associated with those diseases, he says, researchers can insert the causative genes in animals, creating models that can help them decipher what takes place to cause pathologies and develop ways to stop them.

Scientists were already aware of a handful of genes that appear to cause some cases of familial ALS. In the new study, published in the Dec. 9 issue of the journal Neuron, Traynor and his colleagues used a new technique known as exome sequencing to search for more. This new technique differs from the more common type of gene sequencing since it focuses only on the 1 percent to 2 percent of the genome that codes for proteins and ignores the remaining, non-coding DNA. Exome sequencing also sequences thousands of genes at the same time, rather than the step-by-step sequencing of the more traditional method, making exome sequencing significantly faster.

Traynor’s team worked with two affected members of an Italian family discovered by colleague Adriano Chiò, M.D., of the University of Turin, an ALS specialist who maintains a registry of all cases of the disease in northern Italy, and by Jessica Mandrioli, M.D., of the University of Modena. Using exome sequencing on these two ALS patients and 200 people without the disease, the scientists looked for gene differences that the ALS patients had in common that differed from the other samples. Their search turned up a gene called VCP, short for valosin-containing protein.

When the researchers looked for other instances in which this gene was mutated in 210 additional ALS patients, they found four different mutations that affect VCP in five individuals. None of these mutations were found in the genomes of hundreds of healthy controls, suggesting that VCP is indeed the cause for some of the ALS cases.

Though the scientists still don’t know exactly how mutated VCP might lead to ALS, they do know that this gene plays a role in a process known as ubiquination, which tags proteins for degradation. A glitch in this process could lead to too much or too little of some proteins being present in motor neurons, leading to their death. Eventually, Traynor says, scientists may be able to develop drugs that could transform this pathological process into a healthy one in ALS patients, saving motor neurons that otherwise would have died.

This work was supported in part by the Intramural Research Programs of the NIH, National Institute on Aging, and National Institute on Neurological Diseases and Stroke. The work was also funded by the Packard Center for ALS Research at Johns Hopkins, the Fondazione Vialli e Mauro for ALS Research Onlus, Federazione Italiana Giuoco Calcio, the Ministero della Salute, the Muscular Dystrophy Association, and the Woodruff Health Sciences Center at Emory University.

Jeffrey Rothstein, M.D., also of Johns Hopkins, participated in this study.

For more information, go to:
http://www.hopkinsmedicine.org/neurology_neurosurgery/specialty_areas/als/index.html

http://www.grc.nia.nih.gov/branches/lng/ndrg.htm

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>