Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene that causes some cases of familial ALS discovered

Finding could lead to new insight in understanding, treating more common forms of this fatal neurological disease

Using a new gene sequencing method, a team of researchers led by scientists from Johns Hopkins and the National Institutes of Health has discovered a gene that appears to cause some instances of familial amyotrophic lateral sclerosis (ALS). The finding could lead to novel ways to treat the more common form of this fatal neurodegenerative disease, which kills the vast majority of the nearly 6,000 Americans diagnosed with ALS every year.

Researchers don’t know exactly what causes ALS, which destroys the motor neurons that control the movement of all the body’s muscles, including those that control breathing. However, studies into the familial form of the disease, which affects 5 percent to 10 percent of those diagnosed with the disease, could shed some light on why motor neurons die in all types of ALS, says study leader Bryan J. Traynor, M.D., an assistant professor in the Department of Neurology at the Johns Hopkins University School of Medicine and chief of the Neuromuscular Diseases Research Group at the National Institutes of Health.

“If you look at the spectrum of diseases caused by dysfunctional genes, our knowledge of almost all of them has grown out of the familial form of those diseases,” Traynor says. By finding the genes associated with those diseases, he says, researchers can insert the causative genes in animals, creating models that can help them decipher what takes place to cause pathologies and develop ways to stop them.

Scientists were already aware of a handful of genes that appear to cause some cases of familial ALS. In the new study, published in the Dec. 9 issue of the journal Neuron, Traynor and his colleagues used a new technique known as exome sequencing to search for more. This new technique differs from the more common type of gene sequencing since it focuses only on the 1 percent to 2 percent of the genome that codes for proteins and ignores the remaining, non-coding DNA. Exome sequencing also sequences thousands of genes at the same time, rather than the step-by-step sequencing of the more traditional method, making exome sequencing significantly faster.

Traynor’s team worked with two affected members of an Italian family discovered by colleague Adriano Chiò, M.D., of the University of Turin, an ALS specialist who maintains a registry of all cases of the disease in northern Italy, and by Jessica Mandrioli, M.D., of the University of Modena. Using exome sequencing on these two ALS patients and 200 people without the disease, the scientists looked for gene differences that the ALS patients had in common that differed from the other samples. Their search turned up a gene called VCP, short for valosin-containing protein.

When the researchers looked for other instances in which this gene was mutated in 210 additional ALS patients, they found four different mutations that affect VCP in five individuals. None of these mutations were found in the genomes of hundreds of healthy controls, suggesting that VCP is indeed the cause for some of the ALS cases.

Though the scientists still don’t know exactly how mutated VCP might lead to ALS, they do know that this gene plays a role in a process known as ubiquination, which tags proteins for degradation. A glitch in this process could lead to too much or too little of some proteins being present in motor neurons, leading to their death. Eventually, Traynor says, scientists may be able to develop drugs that could transform this pathological process into a healthy one in ALS patients, saving motor neurons that otherwise would have died.

This work was supported in part by the Intramural Research Programs of the NIH, National Institute on Aging, and National Institute on Neurological Diseases and Stroke. The work was also funded by the Packard Center for ALS Research at Johns Hopkins, the Fondazione Vialli e Mauro for ALS Research Onlus, Federazione Italiana Giuoco Calcio, the Ministero della Salute, the Muscular Dystrophy Association, and the Woodruff Health Sciences Center at Emory University.

Jeffrey Rothstein, M.D., also of Johns Hopkins, participated in this study.

For more information, go to:

Christen Brownlee | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>