Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene called flower missing link in vesicle uptake in neurons

07.09.2009
As part of the intricate ballet of synaptic transmission from one neuron to the next, tiny vesicles – bubbles containing the chemical neurotransmitters that make information exchange possible—travel to the tip of neurons (synapses), where they fuse with the cell's membrane (a process called exocytosis).

The extra membrane is then captured in a process called endocytosis and recycled to form a new vesicle to enable the next cycle of release. Most important, exocytosis must be tightly coupled with endocytosis to sustain rapid neurotransmission, said researchers from Baylor College of Medicine in a report that appears in this week's issue of the journal Cell.

Calcium influx into the synapses through tiny pores or channels in the membrane initiates the release of vesicles via exocytosis. Since neurons can fire impulses as frequently as 500 times a second, the calcium that flows into the synapses must be removed very rapidly to keep the process going.

After exocytosis, the vesicle membranes must be retrieved, and this process is also stimulated by an increase in calcium in the synapses, but the channel that mediates this influx was unknown until Dr. Hugo Bellen, a professor of molecular and human genetics at BCM (http://flypush.imgen.bcm.tmc.edu/lab/), and his colleagues identified it in an elegant series of experiments. Interestingly, this channel is present in the vesicles. Hence, the vesicles carry the means to activate their own re-uptake in the form of a protein that functions as a calcium channel.

A genetic screen identified a novel gene called flower, and Chi-Kuang Yao, a postdoctoral fellow in Bellen's laboratory, mapped the gene and showed that the corresponding protein is present in the membrane of synaptic vesicles. He then showed that fruit flies lacking this gene were less able to endocytose vesicles.

Direct experiments involved purifying the Flower protein, putting it into liposomes or artificial vesicles and showing that several copies of the protein can aggregate together and form a channel in membranes. When calcium was introduced into this system, it could enter the vesicle, showing that the protein allows calcium entry.

"The vesicle carries its own channel to promote endocytosis," said Bellen. "It is a simple regulatory system. The mechanism links exocytosis and endocytosis."

Bellen is director of the BCM program in developmental biology and a Howard Hughes Medical Institute investigator.

Others who took part in this research include Yong Qi Lin, Cindy V. Ly, Tomoko Ohyama, Claire M. Haueter, Vera Y. Moiseenkova-Bell and Theodore G. Wensel, all of BCM.

Funding for this work came from the National Institute of Neurological Diseases and Stroke, the BCM Intellectual and Developmental Disabilities Research Center and the Howard Hughes Medical Institute.

When the embargo lifts, this report will be available at www.cell.com.

For more information on basic science research at Baylor College of Medicine, go to www.bcm.edu/fromthelab or www.bcm.edu/news.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>