Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that causes barnacles to avoid ship hulls identified

16.08.2010
The substance medetomidine has proved effective in preventing fouling of ship bottoms. Researchers at the University of Gothenburg have now identified the gene that causes the barnacle to react to the substance, opening up the possibility of an antifouling paint that is gentle both on barnacles and on the environment.

Fouling of hulls is a major problem for world shipping, for private leisure craft as well as large cargo ships. The University of Gothenburg has attempted to develop new, environmentally friendly methods that can limit marine fouling in several large research projects.

Veterinary medicine
One of these focuses on the substance medetomidine, a veterinary medicine that has been shown to prevent barnacle larvae from attaching to the hull. Now researchers at the University of Gothenburg are able to explain why.
Reacting gene indentified
In cooperation with colleagues at the universities of Turku and Helsinki, Professor Anders Blomberg at the Department of Cell and Molecular Biology has succeeded in identifying and describing the gene that controls how barnacles sense and react to medetomidine.
Low levels enough
“We have found that medetomidine activates special receptors in barnacle larvae. The receptors emit a signal that causes the larva to swim away from the boat surface, instead of attaching to it. As the receptors are already activated at very low concentrations of the substance, this means that very low levels are also needed to be effective,” says Professor Blomberg.
Environmental friendly
The results, which are published in the scientific journal Molecular Pharmacology, explain how it is possible to develop an environmentally friendly and effective antifouling paint which instead of killing barnacles acts as a “deterrent”.

“Understanding how the substance works when it binds to the receptor also makes it possible to develop selective agents that only affect barnacles and not other marine organisms,” says Professor Blomberg.

Contact:
Anders Blomberg, Professor in the Department of Cell and Molecular Biology, University of Gothenburg
Tel. 46(0)31 786 2589
46 (0)733 604 624
anders.blomberg@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>