Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene analysis could allow the risk determination for esophageal cancer

28.12.2015

A genetic modification in the mucous membrane of the esophagus, the Barrett esophagus, can lead to esophageal cancer. If certain biomarkers are contained in these tissue alterations, so-called miDNA, these are extremely short DNA strands, it could be an indication that this preliminary stage of esophageal cancer indeed leads to cancer. This was discovered by scientists of the Gastroesophageal Tumor Unit (CCC-GET) of the Comprehensive Cancer Center (CCC) Vienna of the MedUni Vienna and the AKH Vienna in a joint study with the National Institutes of Health, USA, and the Johns Hopkins University, USA.

Esophageal cancer is the eighth most common tumor disease in the western world. A subtype, the adeno carcinoma, is the kind of cancer with the strongest relative increase during the past 10 years, namely around 600% in men and up to 380% in women.


Gene analysis could allow the risk determination for esophageal cancer

The highest risk factor for esophageal cancer is heartburn, i.e. the reflux of sour and acrid stomach liquid into the esophagus (reflux). If reflux remains untreated, it can lead to genetic changes in the mucous membrane and thus to the outbreak of the disease in the long term.

One preliminary stage of adeno carcinoma is the so-called Barrett esophagus, which also exhibits mutations in the mucous membrane. Barrett esophagus leads to esophageal cancer in 0.5% of the cases. In order to prevent a malignant development, physicians recommend the removal of this mucosal change.

Control modules for the tumor development

As not all cases of Barrett esophagus become malignant, it is important for the treating physician to know whether there are reliable indicators (so-called biomarkers) which allow the estimation of a tumor development in the still benign tissue. Sebastian Schoppmann of the University Clinic for Surgery at the MedUni Vienna and the AKH Vienna, Chief of CCC-GET and one of the managers of the study:

"In this project, we have examined the role of molecular-biological control modules for this tumor occurrence, the so-called miDNA in the affected tissue with the aid of a gene test. Our results show that the miDNA profiles of esophageal cancer are indeed different from Barrett esophagus."

Risk estimation and cost-saving disease control

The results of the study suggest that, based on the existence of specific miDNA, it is possible to estimate whether the existing change in the mucous membrane develops into a malignant disease. It would save patients from enduring the removal of the Barrett esophagus and save costs with respect to the follow-up checks of the disease.

Top cooperation

All 300 patients who participated in the study were procured from the CCC-GET unit of MedUni Vienna and AKH Vienna. Schoppmann: "The cooperation with the National Institutes of Health and the Johns Hopkins University, both extremely renowned establishments in the USA, is a great success. The cooperation not only shows the expertise we have developed during the past years, but also that it is recognized in international circles."

http://www.meduniwien.ac.at

Johannes Angerer | AlphaGalileo

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>