Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene analysis could allow the risk determination for esophageal cancer

28.12.2015

A genetic modification in the mucous membrane of the esophagus, the Barrett esophagus, can lead to esophageal cancer. If certain biomarkers are contained in these tissue alterations, so-called miDNA, these are extremely short DNA strands, it could be an indication that this preliminary stage of esophageal cancer indeed leads to cancer. This was discovered by scientists of the Gastroesophageal Tumor Unit (CCC-GET) of the Comprehensive Cancer Center (CCC) Vienna of the MedUni Vienna and the AKH Vienna in a joint study with the National Institutes of Health, USA, and the Johns Hopkins University, USA.

Esophageal cancer is the eighth most common tumor disease in the western world. A subtype, the adeno carcinoma, is the kind of cancer with the strongest relative increase during the past 10 years, namely around 600% in men and up to 380% in women.


Gene analysis could allow the risk determination for esophageal cancer

The highest risk factor for esophageal cancer is heartburn, i.e. the reflux of sour and acrid stomach liquid into the esophagus (reflux). If reflux remains untreated, it can lead to genetic changes in the mucous membrane and thus to the outbreak of the disease in the long term.

One preliminary stage of adeno carcinoma is the so-called Barrett esophagus, which also exhibits mutations in the mucous membrane. Barrett esophagus leads to esophageal cancer in 0.5% of the cases. In order to prevent a malignant development, physicians recommend the removal of this mucosal change.

Control modules for the tumor development

As not all cases of Barrett esophagus become malignant, it is important for the treating physician to know whether there are reliable indicators (so-called biomarkers) which allow the estimation of a tumor development in the still benign tissue. Sebastian Schoppmann of the University Clinic for Surgery at the MedUni Vienna and the AKH Vienna, Chief of CCC-GET and one of the managers of the study:

"In this project, we have examined the role of molecular-biological control modules for this tumor occurrence, the so-called miDNA in the affected tissue with the aid of a gene test. Our results show that the miDNA profiles of esophageal cancer are indeed different from Barrett esophagus."

Risk estimation and cost-saving disease control

The results of the study suggest that, based on the existence of specific miDNA, it is possible to estimate whether the existing change in the mucous membrane develops into a malignant disease. It would save patients from enduring the removal of the Barrett esophagus and save costs with respect to the follow-up checks of the disease.

Top cooperation

All 300 patients who participated in the study were procured from the CCC-GET unit of MedUni Vienna and AKH Vienna. Schoppmann: "The cooperation with the National Institutes of Health and the Johns Hopkins University, both extremely renowned establishments in the USA, is a great success. The cooperation not only shows the expertise we have developed during the past years, but also that it is recognized in international circles."

http://www.meduniwien.ac.at

Johannes Angerer | AlphaGalileo

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>