Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene associated with adolescent idiopathic scoliosis identified

13.05.2013
Researchers from the RIKEN Center for Integrative Medical Sciences in Japan have identified the first gene to be associated with adolescent idiopathic scoliosis (also called AIS) across Asian and Caucasian populations. The gene is involved in the growth and development of the spine during childhood.

Their study is published today in the journal Nature Genetics.


This is a girl with adolescent idiopathic scoliosis (left) and posterior-anterior standing x-ray of spine (right).

Credit: RIKEN

AIS is the most common pediatric skeletal disease, affecting approximately 2% of school-age children. The causes of scoliosis remain largely unknown and brace treatment and surgery are the only treatment options. However, many clinical and genetic studies suggest a contribution of genetic factors.

To understand the causes and development of scoliosis, Dr Ikuyo Kou, Dr Shiro Ikegawa and their team have tried to identify genes that are associated with a susceptibility to develop the condition.

By studying the genome of 1,819 Japanese individuals suffering from scoliosis and comparing it to 25,939 Japanese individuals, the team identified a gene associated with a susceptibility to develop scoliosis on chromosome 6. The association was replicated in Han Chinese and Caucasian populations.

The researchers show that the susceptibility gene, GPR126, is highly expressed in cartilage and that suppression of this gene leads to delayed growth and bone tissue formation in the developing spine. GPR126 is also known to play a role in human height and trunk length.

"Our finding suggest the interesting possibility that GPR126 may affect both AIS susceptibility and height through abnormal spinal development and growth," explain the authors.

"Further functional studies are necessary to elucidate how alterations in GPR126 increase the risk of AIS in humans," they conclude.

For more information please contact:
Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
email: pr@riken.jp
A picture and a copy of the paper are available on request.
Picture caption: Girl with adolescent idiopathic scoliosis (left) and posterior-anterior standing x-ray of spine (right).

Reference

"Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis." Kou et al. Nature Genetics 2013, DOI: 10.1038/ng.2639

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

About the Center for Integrative Medical Sciences

The Center for Integrative Medical Sciences, based in Yokohama, aims to develop revolutionary medical therapies based on collaborative projects between researchers from different areas of science. By achieving a deeper understanding of homeostasis, and how the breakdown of homeostasis leads to disease, scientists at IMS are working to develop personalized preventive medicine and personalized medicine that can allow us to lead healthier lives. The centers focuses include genomics, immunology, allergies, inflammation, endocrinology, and the new field of metabolomics.

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>