Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene associated with adolescent idiopathic scoliosis identified

Researchers from the RIKEN Center for Integrative Medical Sciences in Japan have identified the first gene to be associated with adolescent idiopathic scoliosis (also called AIS) across Asian and Caucasian populations. The gene is involved in the growth and development of the spine during childhood.

Their study is published today in the journal Nature Genetics.

This is a girl with adolescent idiopathic scoliosis (left) and posterior-anterior standing x-ray of spine (right).

Credit: RIKEN

AIS is the most common pediatric skeletal disease, affecting approximately 2% of school-age children. The causes of scoliosis remain largely unknown and brace treatment and surgery are the only treatment options. However, many clinical and genetic studies suggest a contribution of genetic factors.

To understand the causes and development of scoliosis, Dr Ikuyo Kou, Dr Shiro Ikegawa and their team have tried to identify genes that are associated with a susceptibility to develop the condition.

By studying the genome of 1,819 Japanese individuals suffering from scoliosis and comparing it to 25,939 Japanese individuals, the team identified a gene associated with a susceptibility to develop scoliosis on chromosome 6. The association was replicated in Han Chinese and Caucasian populations.

The researchers show that the susceptibility gene, GPR126, is highly expressed in cartilage and that suppression of this gene leads to delayed growth and bone tissue formation in the developing spine. GPR126 is also known to play a role in human height and trunk length.

"Our finding suggest the interesting possibility that GPR126 may affect both AIS susceptibility and height through abnormal spinal development and growth," explain the authors.

"Further functional studies are necessary to elucidate how alterations in GPR126 increase the risk of AIS in humans," they conclude.

For more information please contact:
Juliette Savin
Global Relations Office
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
A picture and a copy of the paper are available on request.
Picture caption: Girl with adolescent idiopathic scoliosis (left) and posterior-anterior standing x-ray of spine (right).


"Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis." Kou et al. Nature Genetics 2013, DOI: 10.1038/ng.2639


RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

About the Center for Integrative Medical Sciences

The Center for Integrative Medical Sciences, based in Yokohama, aims to develop revolutionary medical therapies based on collaborative projects between researchers from different areas of science. By achieving a deeper understanding of homeostasis, and how the breakdown of homeostasis leads to disease, scientists at IMS are working to develop personalized preventive medicine and personalized medicine that can allow us to lead healthier lives. The centers focuses include genomics, immunology, allergies, inflammation, endocrinology, and the new field of metabolomics.

Juliette Savin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>