Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene associated with adolescent idiopathic scoliosis identified

13.05.2013
Researchers from the RIKEN Center for Integrative Medical Sciences in Japan have identified the first gene to be associated with adolescent idiopathic scoliosis (also called AIS) across Asian and Caucasian populations. The gene is involved in the growth and development of the spine during childhood.

Their study is published today in the journal Nature Genetics.


This is a girl with adolescent idiopathic scoliosis (left) and posterior-anterior standing x-ray of spine (right).

Credit: RIKEN

AIS is the most common pediatric skeletal disease, affecting approximately 2% of school-age children. The causes of scoliosis remain largely unknown and brace treatment and surgery are the only treatment options. However, many clinical and genetic studies suggest a contribution of genetic factors.

To understand the causes and development of scoliosis, Dr Ikuyo Kou, Dr Shiro Ikegawa and their team have tried to identify genes that are associated with a susceptibility to develop the condition.

By studying the genome of 1,819 Japanese individuals suffering from scoliosis and comparing it to 25,939 Japanese individuals, the team identified a gene associated with a susceptibility to develop scoliosis on chromosome 6. The association was replicated in Han Chinese and Caucasian populations.

The researchers show that the susceptibility gene, GPR126, is highly expressed in cartilage and that suppression of this gene leads to delayed growth and bone tissue formation in the developing spine. GPR126 is also known to play a role in human height and trunk length.

"Our finding suggest the interesting possibility that GPR126 may affect both AIS susceptibility and height through abnormal spinal development and growth," explain the authors.

"Further functional studies are necessary to elucidate how alterations in GPR126 increase the risk of AIS in humans," they conclude.

For more information please contact:
Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
email: pr@riken.jp
A picture and a copy of the paper are available on request.
Picture caption: Girl with adolescent idiopathic scoliosis (left) and posterior-anterior standing x-ray of spine (right).

Reference

"Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis." Kou et al. Nature Genetics 2013, DOI: 10.1038/ng.2639

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

About the Center for Integrative Medical Sciences

The Center for Integrative Medical Sciences, based in Yokohama, aims to develop revolutionary medical therapies based on collaborative projects between researchers from different areas of science. By achieving a deeper understanding of homeostasis, and how the breakdown of homeostasis leads to disease, scientists at IMS are working to develop personalized preventive medicine and personalized medicine that can allow us to lead healthier lives. The centers focuses include genomics, immunology, allergies, inflammation, endocrinology, and the new field of metabolomics.

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>