Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


GEN reports on advances in DNA vaccine delivery and production

Scientists involved in DNA vaccine research are currently focused on two major issues: the creation of effective delivery systems and the development of more efficient biomanufacturing strategies, reports Genetic Engineering & Biotechnology News (GEN). Top investigators in the field recently discussed these and other topics at a conference in San Diego entitled "DNA Vaccines: Building on Clinical Progress and Exploring New Targets," which was sponsored by the International Society of DNA Vaccines and organized by BioConferences International, a Mary Ann Liebert company, according to the September 1 issue of GEN.

David Weiner, Ph.D., University of Pennsylvania professor and conference chair, noted that despite some early setbacks, DNA vaccine technology has advanced dramatically over the past few years and that therapies currently under evaluation are demonstrating the superb potential of plasmid-based vaccines. He emphasized that a range of novel vaccine methodologies have emerged, including new strategies for getting the plasmids into cells, increasing protein production once they are inside, and modifications of the vaccine proteins that increase their recognition and response by the immune system.

Some of the more promising delivery approaches include transdermal, needle-free patches, devices that transport the plasmids into the skin via air pressure, and electroporation, in which electrical pulses are used to temporarily open the cell membrane, allowing the plasmids easier access to the interior of cells.

On the manufacturing front, Philippe Ledent, Ph.D., process transfer and development manager at Eurogentec Biologics, explained that his company has faced major challenges scaling up the output of both protein and nucleic acid products. For plasmid production Eurogentec turned to fed-batch protocols for better growth control of the cultures, he said, adding that in a two-step process that was based on biomass expansion followed by plasmid DNA production, it was possible to increase fermentation yields 10-fold.

... more about:
»Biologics »DNA »Eurogentec »Gen »electrical pulse

Tony Hitchcock, head of manufacturing technologies at RecipharmCobra Biologics, provided another approach to plasmid purification. The company's product line includes bacteria, animal cells, viruses, novel proteins, and antibodies. The overall process that Hitchcock sought to optimize was quite similar to that followed by Eurogentec: high density fermentation, followed by alkaline cell lysis, chromatographic purification, and final formulation.

Also covered in the GEN article are DNA vaccine production techniques used by Althea Technologies and VGXI.

For a copy of the September 1 issue of GEN, please call (914) 740-2122, or email:

Genetic Engineering & Biotechnology News (GEN, has retained its position as the number one biotech publisher around the globe since its launch in 1981. GEN publishes a print edition 21 times a year and has additional exclusive editorial content online, such as news and analysis, podcasts, webinars, polls, videos, and application notes. GEN's unique news and technology focus includes the entire bioproduct life cycle from early-stage R&D, to applied research including omics, biomarkers, as well as diagnostics, to bioprocessing and commercialization.

John Sterling | EurekAlert!
Further information:

Further reports about: Biologics DNA Eurogentec Gen electrical pulse

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>