Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gel-Based Glue Fastens Snails to Wet Surfaces, Model for Surgical Adhesive

A species of slug (Arion subfuscus) produces a defensive gel it can chemically convert into a remarkably strong glue. Similar gel-based glues attach some snails firmly onto slippery rocks; tools are needed to pry them off.

The tenacity of these glues on wet surfaces is difficult to match with artificial adhesives.

Following up on their original research identifying the key characteristics controlling this transition from a water-based gel into a powerful yet flexible adhesive, researchers at Ithaca College have shed new light on the nature of the adhesive mechanism. Their findings could lead to developing surgical adhesives that would bind to wet surfaces and be less invasive than suturing mechanisms.

“The strength of the natural adhesive comes from the way long, rope-like polymers chemically tie together, or cross link, at certain points,” said Andrew Smith, associate professor of biology. “In our previous studies we had shown that metals were essential to the formation of cross-links. This is unusual, as some combination of electrostatic and hydrophobic interactions are commonly responsible for the formation of cross-links in other gels.”

Electrostatic interactions occur when a negatively charged group on one polymer is attracted to a positively charged group on another. Hydrophobic interactions take place when regions of a polymer don’t interact with water, so they stick together to avoid contacting water.

“We used several approaches to break these interactions, and the treatments that normally disrupt them had no impact on the glue’s mechanical integrity or ability to set,” Smith said. “Our study conclusively showed that electrostatic and hydrophobic interactions do not play any detectable role. Removing metals alone caused the glue to fall apart. This was exciting and unexpected.”

Removing the metals, however, didn’t completely break down the gel. The researchers discovered that a specific protein was responsible for forming strong cross-links that were unaffected when the metals were removed after the glue set. But when metals were removed before the glue set, the cross-links didn’t form.

“This is a very unusual material we’re looking at,” Smith said. “By discovering that metals are central to forming cross-links, we know there are several intriguing mechanisms that could hold the glue together.”

For example, zinc, calcium and iron ions can bind very strongly to several molecules at the same time, thereby effectively joining them together. Iron and copper can also catalyze reactions that trigger strong cross-link formation.

“The significance of this is that we are much farther along the path to our goal of identifying how the glue works so that synthetic mimics can be made,” Smith said.

The study, “Robust Cross-links in Molluscan Adhesive Gels: Testing for Contributions from Hydrophobic and Electrostatic Interactions,” was published in “Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology."

Keith Davis | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>