Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geisel researchers sift through 'junk' to find colorectal cancer clues

04.05.2012
Two researchers at the Geisel School of Medicine at Dartmouth have helped to identify switches that can turn on or off genes associated with colorectal cancer.

The finding offers clues about the development of colorectal cancer and could—potentially—provide targets for new therapies. Jason Moore, Third Century Professor of genetics and the director of the Institute for Quantitative Biomedical Sciences, and Richard Cowper-Sal.lari, a graduate student in Moore's lab, were part of a team that included researchers from Case Western Reserve University and the Cleveland Clinic. The team published its findings in Science Express, the online prepublication site for the journal Science, on April 12.

Many studies of cancer and other diseases have looked for genetic variations that lead to disease. But for this study, Moore, Cowper-Sal.lari, and their colleagues examined sections of DNA that do not code for proteins—sections that have sometimes been referred to as "junk" DNA. Long overlooked, junk DNA has gained more attention of late as it has become clear that it can regulate the expression of genes.

"We're now starting to assign function to what historically has been known as the junk DNA—stuff in between genes that we weren't really sure what it did, if it did anything at all," Moore says. Proteins that bind to noncoding sections far away from a gene, Moore explains, can help turn that gene on or off.

The researchers looked at specific sections of noncoding DNA in nine colorectal cancer samples and three samples of healthy colon tissue. They found patterns in the sections of noncoding DNA that differed depending on whether the tissue was cancerous or healthy. They refer to these sections as variant enhancer loci (VELs). Cowper-Sal.lari says that the patterns they found are more reliable indicators of the presence of colorectal cancer than any currently known patterns of gene expression. "You get a very crisp signal," he says. The tumor samples were taken from patients at various stages of disease, adding to the strength of the finding.

Moore, who is also the associate director for bioinformatics at the Norris Cotton Cancer Center, adds that what he and Cowper-Sal.lari added to the study was their ability to make sense of mountains of data by developing computer programs and algorithms.

"It's an exciting time in cancer research because we can now sequence entire human genomes and measure the genome on a massive scale, but what's lagging behind are the computational methods—the software, the algorithms, the statistical approaches—to allow us to make sense of this vast amount of information," Moore says. "The DNA sequencing technology to generate the data is moving a lot faster than the computational methods for making sense of it."

Cowper-Sal.lari adds that the intense computation required to do the analysis was only possible because of access to Discovery—Dartmouth's supercomputing cluster.

There are a number of directions the research could go in the future. Cowper-Sal.lari says that if they are able to look at additional samples and find the same patterns, then "the genes that are the targets of these VELs are going to be really good potential therapeutic targets for colorectal cancer."

"That's the ultimate goal—to develop drugs," Moore says. "If we can understand the biology of how these genes are turned on and off in cancer, then we can develop drugs to target them and turn them on or off."

Derik Hertel | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>