Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geisel researchers sift through 'junk' to find colorectal cancer clues

04.05.2012
Two researchers at the Geisel School of Medicine at Dartmouth have helped to identify switches that can turn on or off genes associated with colorectal cancer.

The finding offers clues about the development of colorectal cancer and could—potentially—provide targets for new therapies. Jason Moore, Third Century Professor of genetics and the director of the Institute for Quantitative Biomedical Sciences, and Richard Cowper-Sal.lari, a graduate student in Moore's lab, were part of a team that included researchers from Case Western Reserve University and the Cleveland Clinic. The team published its findings in Science Express, the online prepublication site for the journal Science, on April 12.

Many studies of cancer and other diseases have looked for genetic variations that lead to disease. But for this study, Moore, Cowper-Sal.lari, and their colleagues examined sections of DNA that do not code for proteins—sections that have sometimes been referred to as "junk" DNA. Long overlooked, junk DNA has gained more attention of late as it has become clear that it can regulate the expression of genes.

"We're now starting to assign function to what historically has been known as the junk DNA—stuff in between genes that we weren't really sure what it did, if it did anything at all," Moore says. Proteins that bind to noncoding sections far away from a gene, Moore explains, can help turn that gene on or off.

The researchers looked at specific sections of noncoding DNA in nine colorectal cancer samples and three samples of healthy colon tissue. They found patterns in the sections of noncoding DNA that differed depending on whether the tissue was cancerous or healthy. They refer to these sections as variant enhancer loci (VELs). Cowper-Sal.lari says that the patterns they found are more reliable indicators of the presence of colorectal cancer than any currently known patterns of gene expression. "You get a very crisp signal," he says. The tumor samples were taken from patients at various stages of disease, adding to the strength of the finding.

Moore, who is also the associate director for bioinformatics at the Norris Cotton Cancer Center, adds that what he and Cowper-Sal.lari added to the study was their ability to make sense of mountains of data by developing computer programs and algorithms.

"It's an exciting time in cancer research because we can now sequence entire human genomes and measure the genome on a massive scale, but what's lagging behind are the computational methods—the software, the algorithms, the statistical approaches—to allow us to make sense of this vast amount of information," Moore says. "The DNA sequencing technology to generate the data is moving a lot faster than the computational methods for making sense of it."

Cowper-Sal.lari adds that the intense computation required to do the analysis was only possible because of access to Discovery—Dartmouth's supercomputing cluster.

There are a number of directions the research could go in the future. Cowper-Sal.lari says that if they are able to look at additional samples and find the same patterns, then "the genes that are the targets of these VELs are going to be really good potential therapeutic targets for colorectal cancer."

"That's the ultimate goal—to develop drugs," Moore says. "If we can understand the biology of how these genes are turned on and off in cancer, then we can develop drugs to target them and turn them on or off."

Derik Hertel | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>