Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geisel researchers sift through 'junk' to find colorectal cancer clues

04.05.2012
Two researchers at the Geisel School of Medicine at Dartmouth have helped to identify switches that can turn on or off genes associated with colorectal cancer.

The finding offers clues about the development of colorectal cancer and could—potentially—provide targets for new therapies. Jason Moore, Third Century Professor of genetics and the director of the Institute for Quantitative Biomedical Sciences, and Richard Cowper-Sal.lari, a graduate student in Moore's lab, were part of a team that included researchers from Case Western Reserve University and the Cleveland Clinic. The team published its findings in Science Express, the online prepublication site for the journal Science, on April 12.

Many studies of cancer and other diseases have looked for genetic variations that lead to disease. But for this study, Moore, Cowper-Sal.lari, and their colleagues examined sections of DNA that do not code for proteins—sections that have sometimes been referred to as "junk" DNA. Long overlooked, junk DNA has gained more attention of late as it has become clear that it can regulate the expression of genes.

"We're now starting to assign function to what historically has been known as the junk DNA—stuff in between genes that we weren't really sure what it did, if it did anything at all," Moore says. Proteins that bind to noncoding sections far away from a gene, Moore explains, can help turn that gene on or off.

The researchers looked at specific sections of noncoding DNA in nine colorectal cancer samples and three samples of healthy colon tissue. They found patterns in the sections of noncoding DNA that differed depending on whether the tissue was cancerous or healthy. They refer to these sections as variant enhancer loci (VELs). Cowper-Sal.lari says that the patterns they found are more reliable indicators of the presence of colorectal cancer than any currently known patterns of gene expression. "You get a very crisp signal," he says. The tumor samples were taken from patients at various stages of disease, adding to the strength of the finding.

Moore, who is also the associate director for bioinformatics at the Norris Cotton Cancer Center, adds that what he and Cowper-Sal.lari added to the study was their ability to make sense of mountains of data by developing computer programs and algorithms.

"It's an exciting time in cancer research because we can now sequence entire human genomes and measure the genome on a massive scale, but what's lagging behind are the computational methods—the software, the algorithms, the statistical approaches—to allow us to make sense of this vast amount of information," Moore says. "The DNA sequencing technology to generate the data is moving a lot faster than the computational methods for making sense of it."

Cowper-Sal.lari adds that the intense computation required to do the analysis was only possible because of access to Discovery—Dartmouth's supercomputing cluster.

There are a number of directions the research could go in the future. Cowper-Sal.lari says that if they are able to look at additional samples and find the same patterns, then "the genes that are the targets of these VELs are going to be really good potential therapeutic targets for colorectal cancer."

"That's the ultimate goal—to develop drugs," Moore says. "If we can understand the biology of how these genes are turned on and off in cancer, then we can develop drugs to target them and turn them on or off."

Derik Hertel | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>