Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How geckos cope with wet feet

09.08.2012
Geckos are remarkable little creatures, clinging to almost any dry surface, and Alyssa Stark, from the University of Akron, USA, explains that they appear to be equally happy scampering through tropical rainforest canopies as they are in urban settings.

'A lot of work is done on geckos that looks at the very small adhesive structures on their toes to really understand how the system works at the most basic level', says Stark. She adds that the animals grip surfaces with microscopic hairs on the soles of their feet that make close enough contact to be attracted to the surface by the minute van der Waals forces between atoms. However, she and her colleagues Timothy Sullivan and Peter Niewiarowski were curious about how the lizards cope on surfaces in their natural habitat.

Explaining that previous studies had focused on the reptiles clinging to artificial dry surfaces, Stark says 'We know they are in tropical environments that probably have a lot of rain and it's not like the geckos fall out of the trees when it's wet'. Yet, the animals do seem to have trouble getting a grip on smooth wet surfaces, sliding down wet vertical glass after a several steps even though minute patches of the animal's adhesive structures do not slip under humid conditions on moist glass. The team decided to find out how Tokay geckos with wet feet cope on wet and dry surfaces, and publish their discovery that geckos struggle to remain attached as their feet get wetter in The Journal of Experimental Biology at http://jeb.biologists.org.

But first they had to find out how well their geckos clung onto glass with dry feet. Fitting a tiny harness around the lizard's pelvis and gently lowering the animal onto a plate of smooth glass, Stark and Sullivan allowed the animal to become well attached before connecting the harness to a tiny motor and gently pull the lizard until it came unstuck. The geckos hung on tenaciously, and only came unstuck at forces of around 20N, which is about 20 times their own body weight. 'The gecko attachment system is over-designed', says Stark.

Next, the trio sprayed the glass plate with a mist of water and retested the lizards, but this time the animals had problems holding tight: the attachment force varied each time they took a step. The droplets were interfering with the lizards' attachment mechanism, but it wasn't clear how. And when the team immersed the geckos in a bath of room temperature water with a smooth glass bottom, the animals were completely unable to anchor themselves to the smooth surface. 'The toes are superhydrophobic [water repellent]', explains Stark, who could see a silvery bubble of air around their toes, but they were unable to displace the water around their feet to make the tight van der Waals contacts that usually keep the geckos in place.

Then, the team tested the lizard's adhesive forces on the dry surface when their feet had been soaking for 90min and found that the lizards could barely hold on, detaching when they were pulled with a force roughly equalling their own weight. 'That might be the sliding behaviour that we see when the geckos climb vertically up misted glass', says Stark. So, geckos climbing on wet surfaces with damp feet are constantly on the verge of slipping and Stark adds that when the soggy lizards were faced with the misted and immersed horizontal surfaces, they slipped as soon as the rig started pulling.

Therefore geckos can walk on wet surfaces, so long as their feet are reasonably dry. However, as soon as their feet get wet, they are barely able to hang on and the team is keen to understand how long it takes geckos to recover from a drenching.

REFERENCE: Stark, A. Y., Sullivan, T. W. and Niewiarowski, P. H. (2012). The effect of surface water and wetting on gecko adhesion. J. Exp. Biol. 215, 3080-3086.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Sue Chamberlain | EurekAlert!
Further information:
http://jeb.biologists.com
http://www.biologists.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>