Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How geckos cope with wet feet

09.08.2012
Geckos are remarkable little creatures, clinging to almost any dry surface, and Alyssa Stark, from the University of Akron, USA, explains that they appear to be equally happy scampering through tropical rainforest canopies as they are in urban settings.

'A lot of work is done on geckos that looks at the very small adhesive structures on their toes to really understand how the system works at the most basic level', says Stark. She adds that the animals grip surfaces with microscopic hairs on the soles of their feet that make close enough contact to be attracted to the surface by the minute van der Waals forces between atoms. However, she and her colleagues Timothy Sullivan and Peter Niewiarowski were curious about how the lizards cope on surfaces in their natural habitat.

Explaining that previous studies had focused on the reptiles clinging to artificial dry surfaces, Stark says 'We know they are in tropical environments that probably have a lot of rain and it's not like the geckos fall out of the trees when it's wet'. Yet, the animals do seem to have trouble getting a grip on smooth wet surfaces, sliding down wet vertical glass after a several steps even though minute patches of the animal's adhesive structures do not slip under humid conditions on moist glass. The team decided to find out how Tokay geckos with wet feet cope on wet and dry surfaces, and publish their discovery that geckos struggle to remain attached as their feet get wetter in The Journal of Experimental Biology at http://jeb.biologists.org.

But first they had to find out how well their geckos clung onto glass with dry feet. Fitting a tiny harness around the lizard's pelvis and gently lowering the animal onto a plate of smooth glass, Stark and Sullivan allowed the animal to become well attached before connecting the harness to a tiny motor and gently pull the lizard until it came unstuck. The geckos hung on tenaciously, and only came unstuck at forces of around 20N, which is about 20 times their own body weight. 'The gecko attachment system is over-designed', says Stark.

Next, the trio sprayed the glass plate with a mist of water and retested the lizards, but this time the animals had problems holding tight: the attachment force varied each time they took a step. The droplets were interfering with the lizards' attachment mechanism, but it wasn't clear how. And when the team immersed the geckos in a bath of room temperature water with a smooth glass bottom, the animals were completely unable to anchor themselves to the smooth surface. 'The toes are superhydrophobic [water repellent]', explains Stark, who could see a silvery bubble of air around their toes, but they were unable to displace the water around their feet to make the tight van der Waals contacts that usually keep the geckos in place.

Then, the team tested the lizard's adhesive forces on the dry surface when their feet had been soaking for 90min and found that the lizards could barely hold on, detaching when they were pulled with a force roughly equalling their own weight. 'That might be the sliding behaviour that we see when the geckos climb vertically up misted glass', says Stark. So, geckos climbing on wet surfaces with damp feet are constantly on the verge of slipping and Stark adds that when the soggy lizards were faced with the misted and immersed horizontal surfaces, they slipped as soon as the rig started pulling.

Therefore geckos can walk on wet surfaces, so long as their feet are reasonably dry. However, as soon as their feet get wet, they are barely able to hang on and the team is keen to understand how long it takes geckos to recover from a drenching.

REFERENCE: Stark, A. Y., Sullivan, T. W. and Niewiarowski, P. H. (2012). The effect of surface water and wetting on gecko adhesion. J. Exp. Biol. 215, 3080-3086.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Sue Chamberlain | EurekAlert!
Further information:
http://jeb.biologists.com
http://www.biologists.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>