Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gearing-up for spring

31.01.2011
Rapid activation of specific genes readies the mammalian body for seasonal change

The genes that regulate the process called photoperiodism—the seasonal responses induced in organisms by changing day length—have been found by researchers from the RIKEN Center for Developmental Biology, Kobe, and Kinki University, Osaka.

Led by Koh-hei Masumoto and Hiroki R. Ueda from RIKEN, the researchers also discovered how these genes can be activated within a single day[1]. The work bears relevance to seasonal human disorders, such as winter depression, and symptoms associated with conditions such as bipolar disease.

Organisms need to alter body functions and behavior to accommodate seasonal changes in their environment (Fig. 1). The measurement of day length is one obvious way of determining the time of year. To this end, the body uses its internal circadian clock, and against this background measures the extent and timing of light and dark.

The team noted that an increase in day length induces activity in the gene for thyroid stimulating hormone beta (TSHâ) in the pars tuberalis (PT) region of the pituitary gland. TSHâ plays a key role in the pathway that regulates photoperiodism in vertebrate animals. However, the detailed mechanism that links information about day length with induction of the production of TSHâ is unknown.

Masumoto, Ueda and colleagues found the genes that stimulate the activity of the TSHâ gene in mammals by observing the activity of genes in the PT of photoperiod-responsive mice under chronic ’short-day’ (eight hours of light) and ‘long-day’ (16 hours) conditions. They identified 57 genes stimulated by short days and 246, including TSHâ, by long days.

Then, the researchers placed chronic short-day mice into a long-day regime—they switched off the lights eight hours later—and observed that it took five days for TSHâ to become fully active. They could, however, stimulate full activity of TSHâ within a single 24-hour period if they subjected the mice to a short burst of light during a sensitive ‘photo-inducible’ period late at night. Thirty-four other long-day genes responded in the same way, including the transcription factor, Eya3, which seemed a likely candidate for regulating TSHâ activity. In laboratory studies, the researchers determined that Eya3 and its partner binding factor Six1 do indeed act together to activate TSHâ. And this activity is enhanced by two other genes, Tef and Hlf.

“We are next planning to identify the upstream gene of Eya3,” Ueda says. “And we are also hoping to elucidate why the photo-inducible phase is late at night.”

The corresponding author for this highlight is based at the Laboratory for Systems Biology, RIKEN Center for Developmental Biology

Journal information

[1] Masumoto, K., Ukai-Tadenuma, M., Kasukawa, T., Nagano, M., Uno, K.D., Tsujino, K., Horikawa, K., Shigeyoshi, Y. & Ueda, H.R. Acute induction of Eya3 by late-night light stimulation triggers TSHâ expression in photoperiodism. Current Biology 20, 2199–2206 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6510
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>