Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gearing-up for spring

31.01.2011
Rapid activation of specific genes readies the mammalian body for seasonal change

The genes that regulate the process called photoperiodism—the seasonal responses induced in organisms by changing day length—have been found by researchers from the RIKEN Center for Developmental Biology, Kobe, and Kinki University, Osaka.

Led by Koh-hei Masumoto and Hiroki R. Ueda from RIKEN, the researchers also discovered how these genes can be activated within a single day[1]. The work bears relevance to seasonal human disorders, such as winter depression, and symptoms associated with conditions such as bipolar disease.

Organisms need to alter body functions and behavior to accommodate seasonal changes in their environment (Fig. 1). The measurement of day length is one obvious way of determining the time of year. To this end, the body uses its internal circadian clock, and against this background measures the extent and timing of light and dark.

The team noted that an increase in day length induces activity in the gene for thyroid stimulating hormone beta (TSHâ) in the pars tuberalis (PT) region of the pituitary gland. TSHâ plays a key role in the pathway that regulates photoperiodism in vertebrate animals. However, the detailed mechanism that links information about day length with induction of the production of TSHâ is unknown.

Masumoto, Ueda and colleagues found the genes that stimulate the activity of the TSHâ gene in mammals by observing the activity of genes in the PT of photoperiod-responsive mice under chronic ’short-day’ (eight hours of light) and ‘long-day’ (16 hours) conditions. They identified 57 genes stimulated by short days and 246, including TSHâ, by long days.

Then, the researchers placed chronic short-day mice into a long-day regime—they switched off the lights eight hours later—and observed that it took five days for TSHâ to become fully active. They could, however, stimulate full activity of TSHâ within a single 24-hour period if they subjected the mice to a short burst of light during a sensitive ‘photo-inducible’ period late at night. Thirty-four other long-day genes responded in the same way, including the transcription factor, Eya3, which seemed a likely candidate for regulating TSHâ activity. In laboratory studies, the researchers determined that Eya3 and its partner binding factor Six1 do indeed act together to activate TSHâ. And this activity is enhanced by two other genes, Tef and Hlf.

“We are next planning to identify the upstream gene of Eya3,” Ueda says. “And we are also hoping to elucidate why the photo-inducible phase is late at night.”

The corresponding author for this highlight is based at the Laboratory for Systems Biology, RIKEN Center for Developmental Biology

Journal information

[1] Masumoto, K., Ukai-Tadenuma, M., Kasukawa, T., Nagano, M., Uno, K.D., Tsujino, K., Horikawa, K., Shigeyoshi, Y. & Ueda, H.R. Acute induction of Eya3 by late-night light stimulation triggers TSHâ expression in photoperiodism. Current Biology 20, 2199–2206 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6510
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>