Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gate for Bacterial Toxins Found

16.04.2014

Freiburg researchers discover a molecule that smuggles toxins from intestinal pathogens into human cells

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible for smuggling the toxin of the bacterium Clostridium perfringens into the cell.


The cell of the host absorbs the clostridium perfringens toxin TpeL via the receptor LRP1. The toxins then destroy the cell from within. (left: cell culture without toxins; right: cell culture after toxins were applied). Source: Panagiotis Papatheodorou

The TpeL toxin is formed by C. perfringens, a pathogen that causes gas gangrene and food poisoning. It is very similar to the toxins of many other hospital germs of the genus Clostridium. The toxins bind to surface molecules and creep into the body cell, where they lead to cell death.

“In order to prevent the toxin from entering the cell, it is necessary to find the receptor that serves as the gatekeeper. But the search for this key molecule remained unsuccessful for a long time,” says Aktories, member of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies. In cooperation with colleagues from Düsseldorf, the USA, and the Netherlands, the researchers from Freiburg have now identified a receptor for a clostridial toxin of this type for the first time ever.

Their findings were published in the journal Proceedings of the National Academy of Sciences (PNAS).

Clostridia cause intestinal and wound diseases in humans and animals that are often fatal. “At the moment, infections with the bacterium Clostridium difficile are particularly problematic in hospitals. The diseases tend to appear following treatment with antibiotics and often lead to diarrhea, but also to fatal inflammations of the bowels,” explains Aktories.

The toxins force their way into host cells and deactivate signaling molecules by attaching a sugar molecule to these cellular switches. Once this signaling pathway has been switched off, the cell dies – infested tissue dies off.

In order to find the receptor, the researchers applied a genetic selection procedure, a so-called screening, in which individual genes in cells from human cancer cell lines are turned off at random. This procedure led to the discovery that cells are immune to the TpeL toxin when the gene for the protein LRP1 is switched off on the cell surface.

LRP1, which stands for low density lipoprotein receptor-related protein 1, usually takes in proteins that serve as a means of transport for lipids in the blood. The researchers demonstrate that LRP1 is the long sought-after key molecule: It also regulates the intake of the toxin TpeL.

His team also proposes a new model, explains Aktories: “Our findings indicate that two receptors are involved in the effect of the other sugar-carrying clostridial toxins.” Researchers can use the findings to develop new agents against clostridia. “Our discovery will also provide new impetus for researchers to identify further toxin receptors,” Aktories hopes.

Original publication:
LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Björn Schorch, Shuo Song, Ferdy R. van Diemen, Hans H. Bock, Petra May, Joachim Herz, Thijn R. Brummelkamp, Panagiotis Papatheodorou, and Klaus Aktories. PNAS 2014; published ahead of print April 15, 2014, doi:10.1073/pnas.1323790111 

Contact:
Prof. Dr. Dr. Klaus Aktories
Institute of Experimental and Clinical Pharmacology and Toxicology
University of Freiburg
Phone: +49 (0)761/203-5308
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Prof. Dr. Dr. Klaus Aktories | University of Freiburg
Further information:
http://www.uni-freiburg.de

Further reports about: Clostridium PNAS Panagiotis Toxicology bacterium diseases explains genes poisoning procedure proteins receptor toxins

More articles from Life Sciences:

nachricht Carbon nanotubes grown in combustion flames
02.06.2015 | Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University

nachricht Constructing complex molecules with atomic precision
02.06.2015 | Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant structures called plasmoids could simplify the design of future tokamaks

Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have for the first time simulated the formation of structures called "plasmoids" during Coaxial Helicity Injection (CHI), a process that could simplify the design of fusion facilities known as tokamaks.

The findings, reported in the journal Physical Review Letters, involve the formation of plasmoids in the hot, charged plasma gas that fuels fusion reactions....

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Baltic Sea countries plan to save nutrients for the benefit of farmers and environment

01.06.2015 | Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

 
Latest News

Constructing complex molecules with atomic precision

02.06.2015 | Life Sciences

Carbon nanotubes grown in combustion flames

02.06.2015 | Life Sciences

New Wi-Fi antenna enhances wireless coverage

02.06.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>