Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gate for Bacterial Toxins Found

16.04.2014

Freiburg researchers discover a molecule that smuggles toxins from intestinal pathogens into human cells

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible for smuggling the toxin of the bacterium Clostridium perfringens into the cell.


The cell of the host absorbs the clostridium perfringens toxin TpeL via the receptor LRP1. The toxins then destroy the cell from within. (left: cell culture without toxins; right: cell culture after toxins were applied). Source: Panagiotis Papatheodorou

The TpeL toxin is formed by C. perfringens, a pathogen that causes gas gangrene and food poisoning. It is very similar to the toxins of many other hospital germs of the genus Clostridium. The toxins bind to surface molecules and creep into the body cell, where they lead to cell death.

“In order to prevent the toxin from entering the cell, it is necessary to find the receptor that serves as the gatekeeper. But the search for this key molecule remained unsuccessful for a long time,” says Aktories, member of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies. In cooperation with colleagues from Düsseldorf, the USA, and the Netherlands, the researchers from Freiburg have now identified a receptor for a clostridial toxin of this type for the first time ever.

Their findings were published in the journal Proceedings of the National Academy of Sciences (PNAS).

Clostridia cause intestinal and wound diseases in humans and animals that are often fatal. “At the moment, infections with the bacterium Clostridium difficile are particularly problematic in hospitals. The diseases tend to appear following treatment with antibiotics and often lead to diarrhea, but also to fatal inflammations of the bowels,” explains Aktories.

The toxins force their way into host cells and deactivate signaling molecules by attaching a sugar molecule to these cellular switches. Once this signaling pathway has been switched off, the cell dies – infested tissue dies off.

In order to find the receptor, the researchers applied a genetic selection procedure, a so-called screening, in which individual genes in cells from human cancer cell lines are turned off at random. This procedure led to the discovery that cells are immune to the TpeL toxin when the gene for the protein LRP1 is switched off on the cell surface.

LRP1, which stands for low density lipoprotein receptor-related protein 1, usually takes in proteins that serve as a means of transport for lipids in the blood. The researchers demonstrate that LRP1 is the long sought-after key molecule: It also regulates the intake of the toxin TpeL.

His team also proposes a new model, explains Aktories: “Our findings indicate that two receptors are involved in the effect of the other sugar-carrying clostridial toxins.” Researchers can use the findings to develop new agents against clostridia. “Our discovery will also provide new impetus for researchers to identify further toxin receptors,” Aktories hopes.

Original publication:
LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Björn Schorch, Shuo Song, Ferdy R. van Diemen, Hans H. Bock, Petra May, Joachim Herz, Thijn R. Brummelkamp, Panagiotis Papatheodorou, and Klaus Aktories. PNAS 2014; published ahead of print April 15, 2014, doi:10.1073/pnas.1323790111 

Contact:
Prof. Dr. Dr. Klaus Aktories
Institute of Experimental and Clinical Pharmacology and Toxicology
University of Freiburg
Phone: +49 (0)761/203-5308
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Prof. Dr. Dr. Klaus Aktories | University of Freiburg
Further information:
http://www.uni-freiburg.de

Further reports about: Clostridium PNAS Panagiotis Toxicology bacterium diseases explains genes poisoning procedure proteins receptor toxins

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>