Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gap closed in the genetic map of kingdom fungi

23.09.2013
Research team sequences genome of Pyronema confluens

Today, the genomes of more than 250 fungi have been sequenced. Among the basal filamentous ascomycetes – a group of ascomycetes that includes e.g. truffles and morels – only one representative has been analysed so far: the truffle Tuber melanosporum.


Fruiting bodies of Pyronema confluens are shown. The diameter of the fungus' reproductive organs indicated here is half a millimeter. Credit: Stefanie Traeger

"With 125 million base pairs, the truffle genome is unusually big, yet it is coding for relatively few genes, namely some 7,500," says Minou Nowrousian from the Department of General and Molecular Botany. "Until now, it was not clear whether this is typical of basal filamentous ascomycetes or whether it is caused by the truffle's 'atypical' lifestyle."

Unlike other filamentous ascomycetes, the truffle does not develop reproductive organs – so-called fruiting bodies – above ground but rather below ground. Moreover, it only grows in symbiosis with plant roots (mycorrhiza). Pyronema, on the other hand, is a typical representative of its group.

Intermediary evolutionary stage

The genome of Pyronema confluens contains 50 million base pairs and some 13,000 genes; it is thus smaller than that of the truffle, and yet it contains more genes. These findings confirm the truffle's special position and provide new insights into the evolution of ascomycetes. "Pyronema confluens bears a stronger resemblance to higher ascomycetes than to the truffle," concludes Minou Nowrousian. However, the scientists have also discovered differences to higher ascomycetes, for example in the DNA sequence containing the genetic blueprint for mating type genes. Mating type genes are the main regulators of sexual development and, in Pyronema confluens, they do not show the standardised structure that is typical for higher ascomycetes. "Pyronema confluens may represent an intermediary evolutionary stage in the evolution of mating type genes," says the Bochum biologist.

Light-activated genes

One characteristic feature of the fungus under investigation is the fact that it produces fruiting bodies only in light. Fittingly, the researchers discovered genes in the Pyronema genome containing blueprints for photoreceptors for different wavelengths of visible light. The activity of some of those genes increased in light.

Pyronema – a typical representative of its systematic group

Project funding

The German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) funded the project headed by PD Dr Minou Nowrousian (NO 407/4-1).
Bibliographic record

Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar F, Marcet-Houben M, Pöggeler S, Stajich JE, Nowrousian M (2013) The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genet 9(9): e1003820. doi:10.1371/journal.pgen.1003820
Further information

PD Dr Minou Nowrousian
Department of General and Molecular Botany
Faculty of Biology and Biotechnology at the Ruhr-Universität
44780 Bochum, Germany
phone: +49/234/32-24588
e-mail: minou.nowrousian@rub.de

Dr. Minou Nowrousian | EurekAlert!
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>