Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gap closed in the genetic map of kingdom fungi

23.09.2013
Research team sequences genome of Pyronema confluens

Today, the genomes of more than 250 fungi have been sequenced. Among the basal filamentous ascomycetes – a group of ascomycetes that includes e.g. truffles and morels – only one representative has been analysed so far: the truffle Tuber melanosporum.


Fruiting bodies of Pyronema confluens are shown. The diameter of the fungus' reproductive organs indicated here is half a millimeter. Credit: Stefanie Traeger

"With 125 million base pairs, the truffle genome is unusually big, yet it is coding for relatively few genes, namely some 7,500," says Minou Nowrousian from the Department of General and Molecular Botany. "Until now, it was not clear whether this is typical of basal filamentous ascomycetes or whether it is caused by the truffle's 'atypical' lifestyle."

Unlike other filamentous ascomycetes, the truffle does not develop reproductive organs – so-called fruiting bodies – above ground but rather below ground. Moreover, it only grows in symbiosis with plant roots (mycorrhiza). Pyronema, on the other hand, is a typical representative of its group.

Intermediary evolutionary stage

The genome of Pyronema confluens contains 50 million base pairs and some 13,000 genes; it is thus smaller than that of the truffle, and yet it contains more genes. These findings confirm the truffle's special position and provide new insights into the evolution of ascomycetes. "Pyronema confluens bears a stronger resemblance to higher ascomycetes than to the truffle," concludes Minou Nowrousian. However, the scientists have also discovered differences to higher ascomycetes, for example in the DNA sequence containing the genetic blueprint for mating type genes. Mating type genes are the main regulators of sexual development and, in Pyronema confluens, they do not show the standardised structure that is typical for higher ascomycetes. "Pyronema confluens may represent an intermediary evolutionary stage in the evolution of mating type genes," says the Bochum biologist.

Light-activated genes

One characteristic feature of the fungus under investigation is the fact that it produces fruiting bodies only in light. Fittingly, the researchers discovered genes in the Pyronema genome containing blueprints for photoreceptors for different wavelengths of visible light. The activity of some of those genes increased in light.

Pyronema – a typical representative of its systematic group

Project funding

The German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) funded the project headed by PD Dr Minou Nowrousian (NO 407/4-1).
Bibliographic record

Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar F, Marcet-Houben M, Pöggeler S, Stajich JE, Nowrousian M (2013) The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genet 9(9): e1003820. doi:10.1371/journal.pgen.1003820
Further information

PD Dr Minou Nowrousian
Department of General and Molecular Botany
Faculty of Biology and Biotechnology at the Ruhr-Universität
44780 Bochum, Germany
phone: +49/234/32-24588
e-mail: minou.nowrousian@rub.de

Dr. Minou Nowrousian | EurekAlert!
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>