Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gamma interferon a wake-up call for stem cell response to infection

09.06.2010
Most of the time, the body's blood-forming (hematopoietic) stem cells remain dormant, with just a few producing blood cells and maintaining a balance among the different types.

However, invading bacteria can be a call-to-arms, awaking the sleeping stem cells and prompting them to produce immune system cells that fight the foreign organisms. The "bugler" that awakes the stem cells in this battle is gamma interferon, a front-line protein defender against bacterial infection, said researchers from Baylor College of Medicine (www.bcm.edu) in a report that appears in the current issue of the journal Nature (www.nature.com).

"We are looking at the normal function of stem cells," said Dr. Margaret Goodell (www.bcm.edu/star/index.cfm?pmid=2947), professor of molecular and human genetics at BCM and director of the Stem Cells and Regenerative Medicine (STaR) (www.bcm.edu/star/index.cfm?PMID=0) Center. She is the report's senior author. "One of those is to respond to an infection."

Goodell and her colleagues knew that cells farther along in the differentiation process responded to infection, increasing the production of immune cells.

"We were sure there was a mechanism by which hematopoietic stem cells respond to infection, but it was not obvious," she said. They started their work with gamma interferon because they knew it played an important role in bacterial infection.

The collaboration and talents of two researchers in her laboratory – first co-authors Drs. Megan T. Baldridge and Katherine Y. King – facilitated the work with mice that led to this finding, said Goodell. Both are at BCM.

"I think our findings represent an exciting new avenue for studying hematopoiesis," said King. "By viewing the hematopoietic stem cell as the source of the immune system, we are finding fundamental ways in which the immune response affects bone marrow. This is the first time that anyone has extensively studied hematopoietic stem cells in the context of an in vivo model (a living organism) of infection."

"As a specialist in infectious diseases, I see many patients whose bone marrow no longer produces sufficient blood cells as a consequence of their infection. This is particularly relevant in chronic infections such as mycobacterial diseases (that include tuberculosis) and AIDS," said King. "Our studies lend insight into the causes of this decrease in bone marrow function during such infections, and I hope the work will someday lead to new therapies."

Studies in mice with a chronic or long-term infection called Mycobacterium avium show that a greater proportion of a particular subset of their cells called long-term hematopoietic (blood-forming) stem cells are active. Gamma interferon prompts this activity. Mice that lack gamma interferon have fewer of these stem cells active during infection.

These findings show that gamma interferon not only activates stem cells during infection, but also regulate stem cells in normal times, enabling them to maintain the types of blood cells that exist in proportion or homeostasis.

"Our model predicts that bacterial infection detected by sentinel immune cells stimulates the increased release of gamma interferon, which then travels through the blood stream to activate HSCs (hematopoietic stem cells) in the bone marrow, leading to expansion and mobilization of the immune progenitor pool (the cells that ultimately produce immune system cells)," the researchers wrote.

They found that sustained activity by the hematopoietic stem cells can lead to at least transient problems with the quality of the stem cells and their abilities to stimulate production of more immune system cells.

"One of the most important things we found is the chronic infections (such as tuberculosis or HIV/AIDS) may be lead to bone marrow exhaustion," said Baldridge. "We knew that a condition called anemia of chronic disease exists, and this could be one of the contributing factors."

Funding for this work came from the National Institute of Diabetes and Digestive and Kidney Diseases (www.niddk.nih.gov/), the Adeline B. Landa Fellowship of the Texas Children's Hospital Auxiliary, the Simmons Foundation Collaborative Research Fund (http://collaborativeresearchfund.org/), the National Heart, Lung and Blood Institute (www.nhlbi.nih.gov/) and the National Institute of Biomedical Imaging and Bioengineering (www.nibib.nih.gov/).

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>