Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gamers succeed where scientists fail

Molecular structure of retrovirus enzyme solved, doors open to new AIDS drug design

Gamers have solved the structure of a retrovirus enzyme whose configuration had stumped scientists for more than a decade. The gamers achieved their discovery by playing Foldit, an online game that allows players to collaborate and compete in predicting the structure of protein molecules.

After scientists repeatedly failed to piece together the structure of a protein-cutting enzyme from an AIDS-like virus, they called in the Foldit players. The scientists challenged the gamers to produce an accurate model of the enzyme. They did it in only three weeks.

This class of enzymes, called retroviral proteases, has a critical role in how the AIDS virus matures and proliferates. Intensive research is under way to try to find anti-AIDS drugs that can block these enzymes, but efforts were hampered by not knowing exactly what the retroviral protease molecule looks like.

"We wanted to see if human intuition could succeed where automated methods had failed," said Dr. Firas Khatib of the University of Washington Department of Biochemistry. Khatib is a researcher in the protein structure lab of Dr. David Baker, professor of biochemistry.

Remarkably, the gamers generated models good enough for the researchers to refine and, within a few days, determine the enzyme's structure. Equally amazing, surfaces on the molecule stood out as likely targets for drugs to de-active the enzyme.

"These features provide exciting opportunities for the design of retroviral drugs, including AIDS drugs," wrote the authors of a paper appearing Sept. 18 in Nature Structural & Molecular Biology. The scientists and gamers are listed as co-authors.

This is the first instance that the researchers are aware of in which gamers solved a longstanding scientific problem.

Fold-it was created by computer scientists at the University of Washington Center for Game Science in collaboration with the Baker lab.

"The focus of the UW Center for Game Sciences," said director Dr. Zoran Popovic, associate professor of computer science and engineering, "is to solve hard problems in science and education that currently cannot be solved by either people or computers alone."

The solution of the virus enzyme structure, the researchers said, "indicates the power of online computer games to channel human intuition and three-dimensional pattern matching skills to solve challenging scientific problems."

With names like Foldit Contenders Group and Foldit Void Crushers Group, the gamer teams were fired up for the task of real-world molecule modeling problems. The online protein folding game captivates thousands of avid players worldwide and engages the general public in scientific discovery.

Players come from all walks of life. The game taps into their 3-D spatial abilities to rotate chains of amino acids in cyberspace. New players start at the basic level, "One Small Clash," proceed to "Swing it Around" and step ahead until reaching "Rubber Band Reversal."

Direct manipulation tools, as well as assistance from a computer program called Rosetta, encourage participants to configure graphics into a workable protein model. Teams send in their answers, and UW researchers constantly improve the design of the game and its puzzles by analyzing the players' problem-solving strategies.

Figuring out the shape and misshape of proteins contributes to research on causes of and cures for cancer, Alzheimer's, immune deficiencies and a host of other disorders, as well as to environmental work on biofuels.

Referring to this week's report of the online gamers' molecule solution opening new avenues for anti-viral drug research, Carter Kimsey, program director, National Science Foundation Division of Biological Infrastructure, observed, "After this discovery, young people might not mind doing their science homework. This is an innovative approach to getting humans and computer models to 'learn from each other' in real-time."

The researchers noted that much attention has been given to the possibilities of crowd-sourcing and game playing in scientific discovery. Their results indicate the potential for integrating online video games into real-world science.

Dr. Seth Cooper, of the UW Department of Computing Science and Engineering, is a co-creator of Foldit and its lead designer and developer. He studies human-computer exploration methods and the co-evolution of games and players.

"People have spatial reasoning skills, something computers are not yet good at," Cooper said. "Games provide a framework for bringing together the strengths of computers and humans. The results in this week's paper show that gaming, science and computation can be combined to make advances that were not possible before."

Games like Foldit are evolving. To piece together the retrovirus enzyme structure, Cooper said, gamers used a new Alignment Tool for the first time to copy parts of know molecules and test their fit in an incomplete model.

"The ingenuity of game players," Khatib said, "is a formidable force that, if properly directed, can be used to solve a wide range of scientific problems.

According to Popovic, "Foldit shows that a game can turn novices into domain experts capable of producing first-class scientific discoveries. We are currently applying the same approach to change the way math and science are taught in school."

The other scientists involved in this project were Frank DiMaio and James Thompson, both of the UW Department of Biochemistry, and Maciej Kazmierczyk, Miroslaw Gilski, Szymon Krzywda, Helena Zabranska, and Mariusz Jaskolski, all of the Faculty of Chemistry of A. Mickiewicz University in Poznan, Poland, and Iva Pichova of the Academy of Sciences of the Czech Republic, Prague.

The project was supported by the UW Center for Game Science, the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation, the Howard Hughes Medical Institute, and Microsoft Corp.

Leila Gray | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>