Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Game changer: Hepatitis C drug may revolutionize treatment

31.03.2011
Saint Louis University investigator reports findings in New England Journal of Medicine

The drug boceprevir helps cure hard-to-treat hepatitis C, says Saint Louis University investigator Bruce R. Bacon, M.D., author of the March 31 New England Journal of Medicine article detailing the study's findings.

The results, which were first reported at the 61st annual meeting of the American Association for the Study of Liver Disease's last November, offer a brighter outlook for patients who have not responded to standard treatment.

Bacon, who is professor of internal medicine at Saint Louis University School of Medicine and co-principal investigator of the HCV RESPOND-2 study, studied the protease inhibitor boceprevir and found that it significantly increased the number of patients whose blood had undetectable levels of the virus.

"These findings are especially significant for patients who don't respond to initial treatment," said Bacon. "When the hepatitis C virus is not eliminated, debilitating fatigue and more serious problems can follow."

Hepatitis C is caused by a virus that is transmitted by contact with blood. The infection may initially be asymptomatic, but for patients who develop chronic hepatitis C infection, inflammation of the liver may develop, leading to fibrosis and cirrhosis (scarring of the liver), as well as other complications including liver cancer and death.

The prognosis varies for patients with chronic hepatitis C. With the current standard therapy, about half fully recover after an initial course of peginterferon and ribavirin anti-viral therapy that may last from six months to a year.

The remaining patients, known as non-responders, may improve with initial treatment but the virus is not eliminated, or may not respond to treatment at all. For this group, the only current option is to re-treat patients with the same or similar drugs, which increases the likelihood of severe treatment side-effects. In addition, researchers have found that the success of treatment depends on the major strain, or genotype, of hepatitis C that a patient has.

The HCV RESPOND-2 study looked at 403 patients with chronic hepatitis C infections with genotype one, the most difficult strain of the virus to treat, who still had significant levels of the virus after being treated with peginterferon and ribavirin, the standard hepatitis C treatment.

"These results are very exciting," Bacon said. "In this study, boceprevir helped cure significantly more patients in 36 weeks of therapy than did treatment with peginterferon and ribavirin alone."

A second study, HCV SPRINT-2, examined patients with hepatitis C with genotype one who had not yet been treated with the standard treatment. They, too, responded well to the drug.

Bacon calls the progress made in treating hepatitis C remarkable.

"We've gone from the discovery of the virus in 1989 to where we are now, 22 years later, when we have the ability to cure a large majority of those with hepatitis C," Bacon said. "It's a true success story."

"Drugs like boceprevir are going to revolutionize care of those with hepatitis C."

The clinical trial was funded by Merck, which is seeking FDA approval for the drug.

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious disease.

Carrie Bebermeyer | EurekAlert!
Further information:
http://www.slu.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>