Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gambling on Bacteria

Microorganisms offer lessons for gamblers and the rest of us, TAU research says

When it comes to gambling, many people rely on game theory, a branch of applied mathematics that attempts to measure the choices of others to inform their own decisions. It's used in economics, politics, medicine — and, of course, Las Vegas. But recent findings from a Tel Aviv University researcher suggest that we may put ourselves on the winning side if we look to bacteria instead.

According to Prof. Eshel Ben-Jacob of Tel Aviv University's School of Physics and Astronomy, current game theory can't account for bacteria's natural decision-making abilities — it's just too simplistic. Understanding bacteria's reactions to stressful and hazardous conditions may improve decision-making processes in any human arena from everyday life to political elections.

In a recent article published in the Proceedings of the National Academy of Science (PNAS), Prof. Ben-Jacob and his fellow researchers outline how decisions made by communities of bacteria trump game theory. "When human beings make a decision," he says, "they think they're being rational. We now understand that they're influenced by superfluous 'noise,' such as their cognitive state and the influence of others." Bacteria, he explains, are both simpler and more sophisticated — they can more effectively control this superfluous noise and make group decisions that contribute to the well-being of the entire bacterial colony.

Looking out for the whole

Bacteria live in complex colonies that can be 100 times as numerous as the population of Earth. Under stressful circumstances, bacteria have demonstrated a capacity to assess the noisy and stressful environment around them, filter out what's relevant and what's not, and make decisions that ensure the survival of the colony as a whole.

For example, one bacterial response to starvation or poisoning is that a fraction of the cells "sporulate," enclosing their DNA in a capsule or spore as the mother cell dies. This, says Prof. Ben-Jacob, ensures the survival of the colony — when the threat is removed, the spores can germinate and the colony grows again.

During this process, the bacteria "choose" whether or not to enter a state called "competence," in which bacteria change their membranes to more easily absorb substances from their neighboring, dying cells. As a result, they recover more quickly when the stress is gone. According to Prof. Ben-Jacob, it's a difficult choice — in fact, a gamble. The decision to go into a state of competence only pays off if most of the cells decide to sporulate.

Indeed, observations show that only about 10% of cells decide to go into competence. So why don't all bacteria attempt to save themselves? Bacteria don't hide their intentions from their peers in the colony, he explains — they don't lie or prevaricate, but communicate their intentions by sending chemical messages among themselves. Individual bacteria weigh their decisions carefully, taking into account the stress they are facing, the situation of their peers, the statistics of how many cells are sporulating and how many are choosing competence.

Facing tough choices

There are many times in life when humans face similar decisions, says Prof. Ben-Jacob. One example is choosing whether or not to be inoculated during flu season. Do you take the risk of the side effects and get inoculated, or do you trust that most of the people around you will get the vaccine and risk possible illness, sparing you both the disease and the side effects from the vaccine? How do politicians make decisions on key issues, such as national debt, that can harm and benefit society?

There will always be "noise" surrounding decision making, says Prof. Ben-Jacob, but like bacteria, we can use this information to make an action plan. Though bacteria react individually, he notes, there is co-ordination between the cells. It's important to make choices that both benefit us as individuals but also as a group.

"Sometimes we need the restraint of the community," says Prof. Ben-Jacob. "As individuals we need to set some boundaries, and not just boost ourselves at the expense of others."

Keep up with the latest AFTAU news on Twitter:

George Hunka | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>