Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fused genes tackle deadly Pierce's disease in grapevines

A gene fusion research project led by a University of California, Davis, plant scientist delivers a one-two punch to Pierce's disease, a deadly threat to California's world-renowned wine industry.

The study is set for publication the week of Feb. 20 in the early edition of the Proceedings of the National Academy of Sciences.

"Many disease-causing microbes can evade one defensive action by a host plant, but we believe that most microbes would have difficulty overcoming a combination of two immune-system defenses," said UC Davis plant sciences professor Abhaya Dandekar, the lead researcher.

He and his colleagues tested this hypothesis on Xylella fastidiosa, the bacteria responsible for Pierce's disease in grapevines. Strains of the bacteria also attack and damage other host plants, including citrus, stone fruits, almonds, oleander, and certain shade trees, such as oaks, elms, maples and sycamores.

The findings further strengthen UC Davis' standing as a world leader in the science of plant improvement through advances in genetics, genomics, plant breeding and biodiversity.

First noted in California near Anaheim around 1884, Pierce's disease in grapevines is now known to exist in 28 California counties. From 1994 to 2000, the disease destroyed more than 1,000 acres of northern California grapevines, causing $30 million in damages. There is currently no known cure for Pierce's disease.

In grapevines, Xylella fastidiosa is carried from plant to plant by half-inch-long insects known as sharpshooters. The bacteria infect and clog the plant's water-transporting tissue, or xylem. Grapevines with Pierce's disease develop yellow and brown leaves and die within a few years.

To block such infections, the researchers engineered a hybrid gene by fusing together two genes that are responsible for two key functions of the plant's innate immune response: recognizing Xylella fastidiosa as a bacterial invader and destroying its outer membranes, causing the bacteria to die.

The researchers then inserted this hybrid gene into grapevines.

They found that sap from plants genetically engineered with the hybrid gene effectively killed Xylella fastidiosa in the laboratory. And grapevines engineered to carry the hybrid gene had significantly less leaf scorching and xylem clogging, indicating resistance to Pierce's disease.

The Los Alamos National Laboratory, New Mexico, and the U.S. Department of Agriculture collaborated on the project. Funding came from the state Department of Food and Agriculture's Pierce's Disease Program, the U.S. Department of Energy and the U.S. Department of Agriculture.

About UC Davis:

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 32,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget that exceeds $684 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contact(s):

Abhaya Dandekar, Plant Sciences, (530) 752-7784,
Goutam Gupta, Los Alamos National Laboratory, (505) 664-0465,
Pat Bailey, UC Davis News Service, (530) 752-9843,

Patricia Bailey | EurekAlert!
Further information:

Further reports about: Pierce's Disease Science TV Xylella Xylella fastidiosa agriculture grapevines

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>