Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fused genes tackle deadly Pierce's disease in grapevines

21.02.2012
A gene fusion research project led by a University of California, Davis, plant scientist delivers a one-two punch to Pierce's disease, a deadly threat to California's world-renowned wine industry.

The study is set for publication the week of Feb. 20 in the early edition of the Proceedings of the National Academy of Sciences.

"Many disease-causing microbes can evade one defensive action by a host plant, but we believe that most microbes would have difficulty overcoming a combination of two immune-system defenses," said UC Davis plant sciences professor Abhaya Dandekar, the lead researcher.

He and his colleagues tested this hypothesis on Xylella fastidiosa, the bacteria responsible for Pierce's disease in grapevines. Strains of the bacteria also attack and damage other host plants, including citrus, stone fruits, almonds, oleander, and certain shade trees, such as oaks, elms, maples and sycamores.

The findings further strengthen UC Davis' standing as a world leader in the science of plant improvement through advances in genetics, genomics, plant breeding and biodiversity.

First noted in California near Anaheim around 1884, Pierce's disease in grapevines is now known to exist in 28 California counties. From 1994 to 2000, the disease destroyed more than 1,000 acres of northern California grapevines, causing $30 million in damages. There is currently no known cure for Pierce's disease.

In grapevines, Xylella fastidiosa is carried from plant to plant by half-inch-long insects known as sharpshooters. The bacteria infect and clog the plant's water-transporting tissue, or xylem. Grapevines with Pierce's disease develop yellow and brown leaves and die within a few years.

To block such infections, the researchers engineered a hybrid gene by fusing together two genes that are responsible for two key functions of the plant's innate immune response: recognizing Xylella fastidiosa as a bacterial invader and destroying its outer membranes, causing the bacteria to die.

The researchers then inserted this hybrid gene into grapevines.

They found that sap from plants genetically engineered with the hybrid gene effectively killed Xylella fastidiosa in the laboratory. And grapevines engineered to carry the hybrid gene had significantly less leaf scorching and xylem clogging, indicating resistance to Pierce's disease.

The Los Alamos National Laboratory, New Mexico, and the U.S. Department of Agriculture collaborated on the project. Funding came from the state Department of Food and Agriculture's Pierce's Disease Program, the U.S. Department of Energy and the U.S. Department of Agriculture.

About UC Davis:

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 32,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget that exceeds $684 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contact(s):

Abhaya Dandekar, Plant Sciences, (530) 752-7784, amdandekar@ucdavis.edu
Goutam Gupta, Los Alamos National Laboratory, (505) 664-0465, gxg@lanl.gov
Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

Patricia Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: Pierce's Disease Science TV Xylella Xylella fastidiosa agriculture grapevines

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>