Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus deadly to AIDS patients found to grow on trees

22.08.2014

13-year-old's science fair project finds fungus in the environment

Researchers have pinpointed the environmental source of fungal infections that have been sickening HIV/AIDS patients in Southern California for decades. It literally grows on trees.

C. gattii

This false-color electron microscope image catches the fungus Cryptococcus gattii in the act of producing its infectious spores. The club-shaped blue structure is a reproductive organ called the basidium, which projects off the fungus body like an apple off a tree. The spores are colored yellow, and are like seeds that can give rise to a new organism.

Credit: Center for Microbial Pathogenesis, Duke University

The discovery is based on the science project of a 13-year-old girl, who spent the summer gathering soil and tree samples from areas around Los Angeles hardest hit by infections of the fungus named Cryptococcus gattii (CRIP-to-cock-us GAT-ee-eye).

Cryptococcus, which encompasses a number of species including C. gattii, causes life-threatening infections of the lungs and brain and is responsible for one third of all AIDS-related deaths.

The study, which appears Aug. 21 in PLOS Pathogens, found strong genetic evidence that three tree species -- Canary Island pine, Pohutukawa and American sweetgum -- can serve as environmental hosts and sources of these human infections.

"Just as people who travel to South America are told to be careful about drinking the water, people who visit other areas like California, the Pacific Northwest and Oregon need to be aware that they are at risk for developing a fungal infection, especially if their immune system is compromised," said Deborah J. Springer, Ph.D., lead study author and postdoctoral fellow in the Center for Microbial Pathogenesis at Duke University School of Medicine.

A few years ago, Duke's chairman of Molecular Genetics and Microbiology, Joseph Heitman M.D., was contacted by longtime collaborator and UCLA infectious disease specialist Scott Filler, M.D., whose daughter Elan was looking for a project to work on during her summer break. They decided it would be fun to send her out in search of fungi living in the greater Los Angeles area.

The student sampled 109 swabs of more than 30 tree species and 58 soil samples, grew and isolated the Cryptococcus fungus, and then sent those specimens to Springer at Duke. Springer DNA-sequenced the samples from California and compared the sequences to those obtained from HIV/AIDS patients with C. gattii infections.

She was surprised to find that specimens from three of the tree species were genetically almost indistinguishable from the patient specimens.

The researchers also found that the C. gattii isolated from the environment were fertile, reproducing either by sexual or asexual reproduction.

"That finding is important for long-term prevalence in the environment, because this fungal pathogen will be able to grow, reproduce, disperse spores, and serve as a source of ongoing infections," Springer said.

###

Citation

"Cryptococcus gattii VGIII isolates causing infections in HIV/AIDS patients in Southern California: Identification of the local environmental source as arboreal," Deborah J. Springer, R. Blake Billmyre, Elan E. Filler, Kerstin Voelz, Rhiannon Pursal, Piotr Mieczkowski, Robert A. Larsen, Fred S. Dietrich, Robin C. Mary, Scott G. Filler, and Joseph Heitman. PLOS Pathogens, August. 21, 2014.

Karl Bates | Eurek Alert!
Further information:
http://www.duke.edu

Further reports about: C. gattii California Cryptococcus HIV fungal fungus infections isolated species

More articles from Life Sciences:

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

nachricht From vision to hand action
26.07.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Self-assembling nano inks form conductive and transparent grids during imprint

26.07.2016 | Materials Sciences

Lonely Atoms, Happily Reunited

26.07.2016 | Physics and Astronomy

From vision to hand action

26.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>