Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus uses copper detoxification as crafty defense mechanism

15.03.2013
A potentially lethal fungal infection appears to gain virulence by being able to anticipate and disarm a hostile immune attack in the lungs, according to findings by researchers at Duke Medicine.

Defense mechanisms used by the fungus Cryptococcus neoformans enable it to lead to fatal meningitis, which is one of the opportunistic infections often associated with death in HIV/AIDS patients, organ transplant recipients, diabetics and other immunosuppressed patients. In describing the complex process of how C. neoformans averts destruction in the lungs of mice, the Duke researchers have opened new options for drug development.

"Very few antifungal drugs are effective, so we need to identify the Achilles' heel of these fungal pathogens," said Dennis J. Thiele, PhD, the George Barth Geller Professor of Pharmacology and Cancer Biology at Duke University. Thiele is senior author of a study published March 13, 2013, in the journal Cell Host & Microbe. "With this research we may be closer to understanding how this fungal pathogen evades death in its host, and hopefully be closer to finding effective treatments."

Found in the environment, C. neoformans spores can be inhaled and cause infection, particularly when people have weakened immune systems. The Centers for Disease Control and Prevention estimates that worldwide, C. neoformans causes 1 million cases of meningitis a year among HIV/AIDS patients, with nearly 625,000 deaths.

Thiele and colleagues focused on the interplay between C. neoformans in the lungs of mice and the host's immune system, which mount an immediate attack against the pathogen.

The immune response is led by macrophages, which circulate in the blood stream and engulf invading microbes to destroy them. The macrophages are essentially tiny torture chambers for pathogens, using hostile conditions and toxic substances to kill invaders.

Among the substances inside the macrophages is copper, a mineral the body needs for normal cognitive function and development, but also known to have antifungal properties. In the face of a pathogenic invasion of fungal spores, the macrophages begin concentrating more copper within their torture chamber as one of the body's antifungal weapons.

The Duke researchers found that lethal strains of C. neoformans have two ways of battling against the toxicity of the copper. First, the pathogen turns on genes that make proteins to protect it from copper toxicity, so even when exposed to the hostile copper environment in the macrophages, it survives.

But a second defense mechanism is also deployed. The fungus, sensing the copper-rich environment, triggers a response that shuts down the host's ability to pump more copper into the macrophages – defusing this weapon in the immune system's arsenal.

"With these two mechanisms, C. neoformans can defend itself by sequestering the copper, and somehow communicate to the host macrophage, commanding that it shut down the copper pumps," Thiele said.

Thiele said studies are now focusing on how antifungal agents might thwart the pathogen's two defense systems. "The detoxification machinery might represent an effective drug target," Thiele said.

In addition to Thiele, study authors include Chen Ding, Richard A. Festa, Ying-Lien Chen and Joseph Heitman from Duke; Anna Espart and Sílvia Atrian from Universitat de Barcelona, Spain; Òscar Palacios, Jordi Espín and Mercè Capdevila from Universitat Autònoma de Barcelona, Spain.

The work was supported in part by the National Institutes of Health (GM48140-24, 2P30 AI064518-06, AI50438).

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>