Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi Self-Training Gene Prediction Program Developed

30.09.2008
Researchers at the Georgia Institute of Technology have developed a computer program that trains itself to predict genes in the DNA sequences of fungi.

Fungi – which range from yeast to mushrooms – are important for industry and human health, so understanding the recently sequenced fungal genomes can help in developing and producing critical pharmaceuticals. Gene prediction can also help to identify potential targets for therapeutic intervention and vaccination against pathogenic fungi.

“While we previously showed that our unsupervised training program worked well to predict genes in many eukaryotes, it didn’t work as well for various fungal genomes that carry a significant part of the information that facilitates accurate gene prediction in locations called branch point sites,” said Mark Borodovsky, director of Georgia Tech’s Center for Bioinformatics and Computational Genomics.

Branch point sites are located inside introns, which are non-coding regions of DNA located between genetic-code carrying regions called exons.

“Previously during the process of predicting the exon-intron structure of eukaryotic genes, we didn’t search for branch point sites, but doing so in the new program helps to better delineate intron regions inside fungal genes,” added Borodovsky, who is also a Regents’ Professor in the Coulter Department of Biomedical Engineering and the Computational Science and Engineering Division of the College of Computing.

Borodovsky and his colleagues expanded the eukaryotic genome self-training software program they developed in 2005 to address the issue that fungal genes are more complex than other eukaryotes. The research team included graduate student Vardges Ter-Hovhannisyan, Wallace H. Coulter Department of Biomedical Engineering research scientist Alexandre Lomsadze and School of Biology professor Yury Chernoff.

Details of the new program, called GeneMark.hmm-ES (BP), are available online in the journal Genome Research and will be included in the journal’s December print edition. The software will also be freely available for academic researchers.

Borodovsky developed the first version of GeneMark in 1993. In 1995, this program was used to find genes in the first completely sequenced genomes of bacteria and archea. The research team then developed self-training versions of the gene finding program for prokaryotic (organisms that lack a cell nucleus) and eukaryotic (organisms that contain a cell nucleus) genomes in 2001 and 2005, respectively. Development of these programs has been supported by the National Institutes of Health.

Unlike other programs that require a pre-determined training set along with the genome sequence, GeneMark.hmm-ES (BP) only requires the genome sequence. The program is able to iteratively identify the correct algorithm parameters from the anonymous sequence. The program uses a probabilistic mathematical model called the Hidden Markov Model to pinpoint the boundaries between coding sequences (exons) and non-coding sequences (introns and intergenic regions).

Most introns start from the dinucleotide guanine-thymine (abbreviated GT) and end with the dinucleotide adenine-guanine (abbreviated AG). However, finding these dinucleotides is not sufficient to signal the presence of an intron. Several nucleotides that surround GT and AG are also important, but the similarity of the pattern is not deterministic. Locating the branch site – which is nine nucleotides in length, almost always contains an adenine and is located 20-50 bases upstream of the acceptor site – helps to accurately identify an intron.

An initial run of the program with a reduced model containing heuristically defined parameters breaks the sequence into coding and non-coding regions. With this information, the researchers apply machine-learning techniques to refine the parameters of the recognition algorithm with respect to the specific patterns found in the newly identified protein-coding and non-coding sequences as well as the border sites.

The prediction and training steps are repeated, each time detecting a larger set of true coding and non-coding sequences that are used to further improve the model employed in statistical pattern recognition. When the new sequence breakdown coincides with the previous one, the researchers record their final set of predicted genes.

To test the algorithm, the researchers selected 16 fungal species from the phyla Ascomycota, Basidiomycota and Zygomycota and compiled sets of genome sequences containing previously validated genes. The species spanned large evolutional distances and exhibited significant variability in genome size, gene number and average number of introns per gene. The results showed that by including branch site information in the model, the researchers could more accurately predict exon-intron structures of fungal genes.

“The enhanced program predicted fungal genes with higher accuracy than either the original self-training algorithm or known algorithms with supervised training,” noted Borodovsky. “And because we didn’t need any additional training information for our program, the sequencing teams could immediately proceed with gene annotation right after the genomic sequence was in hand without spending time and effort to extract a set of validated genes necessary for estimating parameters of traditional algorithms.”

Researchers at the U.S. Department of Energy Joint Genome Institute and the Broad Institute of the Massachusetts Institute of Technology and Harvard University have already realized the advantages of the new algorithm. They have already used the new program to annotate about 20 novel fungal genomes. In addition, hundreds of fungal genome sequencing projects currently in progress should benefit from the new method as well, according to Borodovsky.

With the fungal software completed, Borodovsky and his team are already looking to expand their gene prediction algorithms to accurately interpret even more complex eukaryotic genomes.

“There are genome sequencing projects where large repeat populations, a significant number of pseudogenes or substantial sequence inhomogeneity hamper ab initio gene prediction and we’re ready to tackle them next,” added Borodovsky.

Technical Contact: Mark Borodovsky (borodovsky@gatech.edu)

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>