Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi: Another Tool in Bacteria's Belt?

29.11.2011
Fungi and bacteria help one another stay mobile, say TAU researchers

Bacteria and fungi are remarkably mobile. Now researchers at Tel Aviv University have discovered that the two organisms enjoy a mutually beneficial relationship to aid them in that movement — and their survival.

Fungal spores can attach themselves to bacteria, "hitching a ride" wherever the bacteria travel. And while this allows them to travel further than they would on their own, says Prof. Eshel Ben-Jacob of TAU's Raymond and Beverly Sackler School of Physics and Astronomy, it's certainly not a one-way street. Bacteria live largely in the rhizosphere — the environment that surrounds plant roots — where air pockets can interrupt their progress, he explains. When faced with a gap, the bacteria can drop the fungal spores to form a bridge, and continue across the chasm.

The research, which was recently published in PNAS, was done in collaboration with Dr. Colin J. Ingham of Wageningen University and JBZ Hospital in the Netherlands, the paper's lead author; post-doctoral fellow Dr. Alin Finkelshtein; and graduate student Oren Kalishman working in Prof. Ben-Eshel's TAU lab.

This discovery contributes to our understanding of the way bacteria and fungi spread. Confirmation that the two organisms work in collaboration will help scientists fight disease-causing bacteria, or promote the spread of "good kinds" of bacteria or fungi, such as those that contribute to the health of plants. "In addition we now know that when you fight fungi, you are also fighting bacteria — and vice versa," notes Prof. Ben-Jacob.

A bridge to mutual survival

Mobile or "motile" bacteria, such as Paenibacillus vortex, are known to be able to carry cargo. With this in mind, the researchers were motivated to test whether P. vortex would be able to carry non-motile fungi, aiding in its dispersion. In fact, they observed that not only can the bacteria transport the fungi over long distances, like humans being carried by air travel, but they are also able to recover fungal spores from life-threatening locations, moving them to new and more favorable places where they can germinate and start new colonies. "The bacteria entrap the spores and wrap them in their flagella, which are like arms," explains Prof. Ben-Jacob. "This is similar to the way the Lilliputians moved the giant Gulliver by trapping him in a mesh of ropes."

But the bacteria's services aren't free. In an experiment, the researchers created air gaps or "canyons" too large for bacteria to cross. When confronted with this challenge, the bacteria used the fungi's mycelia — branch-like structures on the spores — as natural bridges, enabling them to cross otherwise impenetrable gaps, notes Dr. Ingham.

"We see that upon encountering impossible terrains, the bacteria can bring fungal spores to help," Prof. Ben-Jacob continues. "The bacteria allow the fungi to germinate and form a colony, and then use the mycelia to cross obstacles."

Taking over new territories

Ultimately, this collaboration helps both the bacteria and the fungi to spread and thrive in highly competitive habitats. It's a sophisticated survival strategy, say the researchers, and contributes to our understanding of bacteria as smart organisms with an intricate social life. "The bacteria never let us down," Prof. Ben-Jacob says with a smile. "Just present them with a new challenge and you can be sure they'll provide new surprises."

These observations can also be applied to agriculture and medicine, showing new mechanisms by which bacteria and fungi can help one another to invade new territories in the rhizosphere — as well as in hospitals and within our own bodies.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>